Given a convex function $f$ on $\mathbb{R}^n$ with an integer minimizer, we show how to find an exact minimizer of $f$ using $O(n^2 \log n)$ calls to a separation oracle and $O(n^4 \log n)$ time. The previous best polynomial time algorithm for this problem given in [Jiang, SODA 2021, JACM 2022] achieves $O(n^2\log\log n/\log n)$ oracle complexity. However, the overall runtime of Jiang's algorithm is at least $\widetilde{\Omega}(n^8)$, due to expensive sub-routines such as the Lenstra-Lenstra-Lov\'asz (LLL) algorithm [Lenstra, Lenstra, Lov\'asz, Math. Ann. 1982] and random walk based cutting plane method [Bertsimas, Vempala, JACM 2004]. Our significant speedup is obtained by a nontrivial combination of a faster version of the LLL algorithm due to [Neumaier, Stehl\'e, ISSAC 2016] that gives similar guarantees, the volumetric center cutting plane method (CPM) by [Vaidya, FOCS 1989] and its fast implementation given in [Jiang, Lee, Song, Wong, STOC 2020]. For the special case of submodular function minimization (SFM), our result implies a strongly polynomial time algorithm for this problem using $O(n^3 \log n)$ calls to an evaluation oracle and $O(n^4 \log n)$ additional arithmetic operations. Both the oracle complexity and the number of arithmetic operations of our more general algorithm are better than the previous best-known runtime algorithms for this specific problem given in [Lee, Sidford, Wong, FOCS 2015] and [Dadush, V\'egh, Zambelli, SODA 2018, MOR 2021].


翻译:暂无翻译

0
下载
关闭预览

相关内容

甲骨文公司,全称甲骨文股份有限公司(甲骨文软件系统有限公司),是全球最大的企业级软件公司,总部位于美国加利福尼亚州的红木滩。1989年正式进入中国市场。2013年,甲骨文已超越 IBM ,成为继 Microsoft 后全球第二大软件公司。
专知会员服务
32+阅读 · 2021年3月7日
ExBert — 可视化分析Transformer学到的表示
专知会员服务
31+阅读 · 2019年10月16日
图节点嵌入(Node Embeddings)概述,9页pdf
专知
15+阅读 · 2020年8月22日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
RL解决'BipedalWalkerHardcore-v2' (SOTA)
CreateAMind
31+阅读 · 2019年7月17日
可解释AI(XAI)工具集—DrWhy
专知
25+阅读 · 2019年6月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
CNN 反向传播算法推导
统计学习与视觉计算组
30+阅读 · 2017年12月29日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
Layer Normalization原理及其TensorFlow实现
深度学习每日摘要
32+阅读 · 2017年6月17日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
VIP会员
相关VIP内容
专知会员服务
32+阅读 · 2021年3月7日
ExBert — 可视化分析Transformer学到的表示
专知会员服务
31+阅读 · 2019年10月16日
相关资讯
图节点嵌入(Node Embeddings)概述,9页pdf
专知
15+阅读 · 2020年8月22日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
RL解决'BipedalWalkerHardcore-v2' (SOTA)
CreateAMind
31+阅读 · 2019年7月17日
可解释AI(XAI)工具集—DrWhy
专知
25+阅读 · 2019年6月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
CNN 反向传播算法推导
统计学习与视觉计算组
30+阅读 · 2017年12月29日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
Layer Normalization原理及其TensorFlow实现
深度学习每日摘要
32+阅读 · 2017年6月17日
相关基金
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员