Information extraction (IE) from documents is an intensive area of research with a large set of industrial applications. Current state-of-the-art methods focus on scanned documents with approaches combining computer vision, natural language processing and layout representation. We propose to challenge the usage of computer vision in the case where both token style and visual representation are available (i.e native PDF documents). Our experiments on three real-world complex datasets demonstrate that using token style attributes based embedding instead of a raw visual embedding in LayoutLM model is beneficial. Depending on the dataset, such an embedding yields an improvement of 0.18% to 2.29% in the weighted F1-score with a decrease of 30.7% in the final number of trainable parameters of the model, leading to an improvement in both efficiency and effectiveness.
翻译:从文档中提取信息(IE)是一个密集的研究领域,有大量的工业应用。目前最先进的方法侧重于扫描文档,结合计算机视觉、自然语言处理和布局代表等方法。我们提议在有象征性风格和视觉表述(即本地PDF文件)的情况下质疑计算机视觉的使用。我们在三个真实世界复杂的数据集上的实验表明,使用象征性风格属性嵌入而不是在布局LM模型中原始的视觉嵌入是有益的。根据数据集,这种嵌入使加权F1核心改进了0.18%至2.29%,使该模型最后可培训参数的数量减少了30.7%,从而提高了效率和有效性。