We introduce a model of register automata over infinite trees with extrema constraints. Such an automaton can store elements of a linearly ordered domain in its registers, and can compare those values to the suprema and infima of register values in subtrees. We show that the emptiness problem for these automata is decidable. As an application, we prove decidability of the countable satisfiability problem for two-variable logic in the presence of a tree order, a linear order, and arbitrary atoms that are MSO definable from the tree order. As a consequence, the satisfiability problem for two-variable logic with arbitrary predicates, two of them interpreted by linear orders, is decidable.
翻译:我们引入了无穷树木的自动登记模式。 这种自动地图可以将线性订购域的元素存储在登记册中,并且可以将这些值与亚树的登记值的顶点和底点进行对比。 我们证明这些自动地图的空虚性问题是可变的。 作为应用,我们证明在树序、线性顺序和可从树序中定义的任意原子面前,可变逻辑的可计算性问题的可变性是可变的,因为树序、线性顺序和任意原子是MSO可定义的。 结果,两种可变逻辑的可变性与任意的前提(其中两种由线性命令解释)的可变性问题是可变的。 两种逻辑的可变性是可变的,其中两种逻辑是可变的,由直线性命令解释的。