Structural damping is known to be approximately rate-independent in many cases. Popular models for rate-independent dissipation are hysteresis models; and a highly popular hysteresis model is the Bouc-Wen model. If such hysteretic dissipation is incorporated in a refined finite element model, then the mathematical model includes the usual structural dynamics equations along with nonlinear nonsmooth ordinary differential equations for a large number of internal hysteretic states at Gauss points, to be used within the virtual work calculation for dissipation. For such systems, numerical integration becomes difficult due to both the distributed non-analytic nonlinearity of hysteresis as well as the very high natural frequencies in the finite element model. Here we offer two contributions. First, we present a simple semi-implicit integration approach where the structural part is handled implicitly based on the work of Pich\'e, and where the hysteretic part is handled explicitly. A cantilever beam example is solved in detail using high mesh refinement. Convergence is good for lower damping and a smoother hysteresis loop. For a less smooth hysteresis loop and/or higher damping, convergence is observed to be roughly linear on average. Encouragingly, the time step needed for stability is much larger than the time period of the highest natural frequency of the structural model. Subsequently, data from several simulations conducted using the above semi-implicit method are used to construct reduced order models of the system, where the structural dynamics is projected onto a small number of modes and the number of hysteretic states is reduced significantly as well. Convergence studies of error against the number of retained hysteretic states show very good results.
翻译:在很多情况下,人们都知道在结构上存在障碍,在结构上存在障碍,在很多情况下,人们都知道这种结构是基本上不依靠率独立的消散的流行模型是歇斯底里模型;而高度流行的歇斯底里模型是Bouc-Wen模型。如果将这种歇斯底里消散纳入一个精细的有限元素模型,那么数学模型就包括了通常的结构动态方程式以及非线性非线性普通差异方程式,在高斯点的大量内部歇斯底里化状态中,在虚拟工作计算中将使用用于消散的模型。对于这类系统来说,数字整合变得非常困难,因为分布的非分析性的结构动态非线性非线性强的超线性静态模型模式,以及有限元素模型模型模型的自然频率非常高。我们在这里提供两种贡献。首先,我们提出了一个简单的简单的半隐性整合方法,根据Piche的工作对结构部分进行隐性处理,并且明确处理螺旋性部分。在虚拟工作计算中,使用高度的精度模型来解决一个保留性的例子。对于这类系统来说,由于高度的精度的精细的精细的精细的精确性模型是很好的,对于低的精细的精细的精细的精细的精细的精确性模型是良好的,对于低的精确的精确的精确度是好的,在预测的精确的精确的精确的精细的精细的精细的精确性研究,对于低的精细的精确性研究,对于低的精确的精确的精确的精确的精确的精确的精确的精确的精确性研究是用来,对于低的精确的精确的精确性研究,对于低的周期性研究,对于低的周期的周期性研究,对于低的周期性研究,在的周期性研究是观察到的周期的周期的周期的周期的周期的周期的周期性的研究。