Neyman (1923/1990) introduced the randomization model, which contains the notation of potential outcomes to define causal effects and a framework for large-sample inference based on the design of the experiment. However, the existing theory for this framework is far from complete especially when the number of treatment levels diverges and the group sizes vary a lot across treatment levels. We provide a unified discussion of statistical inference under the randomization model with general group sizes across treatment levels. We formulate the estimator in terms of a linear permutational statistic and use results based on Stein's method to derive various Berry--Esseen bounds on the linear and quadratic functions of the estimator. These new Berry--Esseen bounds serve as basis for design-based causal inference with possibly diverging treatment levels and diverging dimension of causal effects. We also fill an important gap by proposing novel variance estimators for experiments with possibly many treatment levels without replications. Equipped with the newly developed results, design-based causal inference in general settings becomes more convenient with stronger theoretical guarantees.


翻译:内曼(1923/1990年)引入了随机化模型,其中载有根据实验设计确定因果关系的潜在结果说明以及大型抽样推断框架,然而,这一框架的现有理论远非完全,特别是当处理水平不同,组规模不同,不同处理水平差异很大时更是如此;我们对随机化模型下的统计推论进行了统一讨论,其范围跨处理水平的组群一般大小不同;我们根据Stein在估计者线性和二次函数上得出各种Berry-Esseen界限的方法,以线性调整统计和使用结果为基础,对估计结果进行了估计;这些新的Berry-Esseen界限作为基于设计、可能不同处理水平和不同因果影响层面的因果关系推论的基础;我们还填补了一个重要的差距,为可能许多治疗水平的试验提出新的差异估测,而无需复制;根据新开发的结果,一般环境中基于设计因素的因果关系推论更加方便,理论保证更加有力。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
123+阅读 · 2020年9月8日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
5+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
26+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年12月14日
Arxiv
14+阅读 · 2022年10月15日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
5+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
26+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员