Consider a game played on a simple graph $G = (V, E)$ where each vertex consists of a clickable light. Clicking any vertex $v$ toggles the on/off state of $v$ and its neighbors. Starting from an initial configuration of lights, one wins the game by finding a solution: a sequence of clicks that turns off all the lights. When G is a $5 \times 5$ grid, this game was commercially available from Tiger Electronics as Lights Out. Restricting ourselves to solvable initial configurations, we pose a natural question about this game, the Most Clicks Problem (MCP): How many clicks does a worst-case initial configuration on $G$ require to solve? The answer to the MCP is already known for nullity 0 graphs: those on which every initial configuration is solvable. Generalizing a technique from Scherphuis, we give an upper bound to the MCP for all grids of size $(6k - 1) \times (6k - 1)$. We show the value given by this upper bound exactly solves the MCP for all nullity 2 grids of this size. We conjecture that all nullity 2 grids are of size $(6k - 1) \times (6k - 1)$, which would mean we solved the MCP for all nullity 2 grids.
翻译:以简单图形 $G = (V, E) 玩的游戏, 每个顶点由可点击的灯光组成。 单击任何顶点 $v$, 以切换美元及其邻居的运行/ 关闭状态 。 从最初的灯光配置开始, 一个人通过找到一个解决方案而赢得游戏 : 关闭所有灯光的点击序列 。 当 G 是 5 美元 乘 5 美元 的网格时, 这个游戏在商业上可以从“ 老虎电子” 退出时获得。 将我们限制在可解开的初始配置中, 我们对这个游戏提出一个自然问题, “ 点击最多的问题 : 多少点击对 $G$ 需要解决的最坏的初始配置? 多少? 从最初的亮点配置开始, 一个通过找到一个解决方案来赢得游戏的游戏的答案: 点击的顺序是关闭所有灯光源 。 当Gemerphuis 使用一个技术时, 我们给 MCP 上一个从所有大小的网格 $( 6k-1) 6- 时间 美元 。 我们展示了这个上限给出的数值, $ 2 等网格大小 。