This paper studies semi-supervised object classification in relational data, which is a fundamental problem in relational data modeling. The problem has been extensively studied in the literature of both statistical relational learning (e.g. relational Markov networks) and graph neural networks (e.g. graph convolutional networks). Statistical relational learning methods can effectively model the dependency of object labels through conditional random fields for collective classification, whereas graph neural networks learn effective object representations for classification through end-to-end training. In this paper, we propose the Graph Markov Neural Network (GMNN) that combines the advantages of both worlds. A GMNN models the joint distribution of object labels with a conditional random field, which can be effectively trained with the variational EM algorithm. In the E-step, one graph neural network learns effective object representations for approximating the posterior distributions of object labels. In the M-step, another graph neural network is used to model the local label dependency. Experiments on object classification, link classification, and unsupervised node representation learning show that GMNN achieves state-of-the-art results.
翻译:本文研究相关数据的半监督对象分类,这是关系数据建模的一个根本问题,这个问题在统计关系学习(例如关系Markov网络)和图形神经网络(例如图图变动网络)的文献中都进行了广泛研究,统计关系学习方法可以通过集体分类的有条件随机字段,有效地模拟对象标签的依赖性,而图形神经网络则通过端到端培训学习有效的分类对象表示。本文建议采用将两个世界的优势结合起来的图示 Markov神经网络(GMNN) 。GMNN模型模拟以有条件随机字段为对象标签的联合分布,可以与变异EM算法进行有效培训。在电子步骤中,一个图形神经网络学习关于对象标签外表分布近似的有效对象表示。在M级中,另一个图形神经网络用来模拟本地标签依赖性。在对象分类、链接分类和未校准的节点代表中进行实验,显示GNNNP取得状态结果。