APSP with small integer weights in undirected graphs [Seidel'95, Galil and Margalit'97] has an $\tilde{O}(n^\omega)$ time algorithm, where $\omega<2.373$ is the matrix multiplication exponent. APSP in directed graphs with small weights however, has a much slower running time that would be $\Omega(n^{2.5})$ even if $\omega=2$ [Zwick'02]. To understand this $n^{2.5}$ bottleneck, we build a web of reductions around directed unweighted APSP. We show that it is fine-grained equivalent to computing a rectangular Min-Plus product for matrices with integer entries; the dimensions and entry size of the matrices depend on the value of $\omega$. As a consequence, we establish an equivalence between APSP in directed unweighted graphs, APSP in directed graphs with small $(\tilde{O}(1))$ integer weights, All-Pairs Longest Paths in DAGs with small weights, approximate APSP with additive error $c$ in directed graphs with small weights, for $c\le \tilde{O}(1)$ and several other graph problems. We also provide fine-grained reductions from directed unweighted APSP to All-Pairs Shortest Lightest Paths (APSLP) in undirected graphs with $\{0,1\}$ weights and $\#_{\text{mod}\ c}$APSP in directed unweighted graphs (computing counts mod $c$). We complement our hardness results with new algorithms. We improve the known algorithms for APSLP in directed graphs with small integer weights and for approximate APSP with sublinear additive error in directed unweighted graphs. Our algorithm for approximate APSP with sublinear additive error is optimal, when viewed as a reduction to Min-Plus product. We also give new algorithms for variants of #APSP in unweighted graphs, as well as a near-optimal $\tilde{O}(n^3)$-time algorithm for the original #APSP problem in unweighted graphs. Our techniques also lead to a simpler alternative for the original APSP problem in undirected graphs with small integer weights.


翻译:APSP 在未定向的图形[Seidel'95, Galil 和 Margalit'97] 中有小整数重量的 APSP 。 要理解这个 $@tilde{O}(n ⁇ omega) 时间算法, 美元=2. 373美元是矩阵倍增。 然而, 在带有小重量的定向图形中, APSP 运行时间要慢得多, 美元=2美元 [Zwick'02] 。 为了理解这个 $_n%q%2.5} blockneck, 我们在未加权的 APSP 时间算法里, 美元=$2xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

0
下载
关闭预览

相关内容

【WWW2021】双曲图卷积网络的协同过滤
专知会员服务
40+阅读 · 2021年3月26日
专知会员服务
33+阅读 · 2021年2月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
MIT新书《强化学习与最优控制》
专知会员服务
277+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年4月5日
Linear Systems can be Hard to Learn
Arxiv
0+阅读 · 2021年4月2日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员