We prove several tight results on the fine-grained complexity of approximating the diameter of a graph. First, we prove that, for any $\varepsilon>0$, assuming the Strong Exponential Time Hypothesis (SETH), there are no near-linear time $2-\varepsilon$-approximation algorithms for the Diameter of a sparse directed graph, even in unweighted graphs. This result shows that a simple near-linear time 2-approximation algorithm for Diameter is optimal under SETH, answering a question from a survey of Rubinstein and Vassilevska-Williams (SIGACT '19) for the case of directed graphs. In the same survey, Rubinstein and Vassilevska-Williams also asked if it is possible to show that there are no $2-\varepsilon$ approximation algorithms for Diameter in a directed graph in $O(n^{1.499})$ time. We show that, assuming a hypothesis called NSETH, one cannot use a deterministic SETH-based reduction to rule out the existence of such algorithms. Extending the techniques in these two results, we characterize whether a $2-\varepsilon$ approximation algorithm running in time $O(n^{1+\delta})$ for the Diameter of a sparse directed unweighted graph can be ruled out by a deterministic SETH-based reduction for every $\delta\in(0,1)$ and essentially every $\varepsilon\in(0,1)$, assuming NSETH. This settles the SETH-hardness of approximating the diameter of sparse directed unweighted graphs for deterministic reductions, up to NSETH. We make the same characterization for randomized SETH-based reductions, assuming another hypothesis called NUNSETH. We prove additional hardness and non-reducibility results for undirected graphs.


翻译:在接近图形直径的精细复杂度上,我们证明了几个非常严格的分析结果。 首先,我们证明,对于任何美元来说,如果假设强烈的光学时间假设(Sethy),对于任何美元来说,对于一个粗略的直径直径的精确度值来说,没有近线时间为2美元,即使没有加权的图形,对于一个稀薄的图形的直径直径直径的直径直径直径的直径的直径计算算法。这个结果表明,一个简单的近线性联合国时间为直径直径的直径2(xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxlxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
专知会员服务
27+阅读 · 2020年2月15日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
【TED】什么让我们生病
英语演讲视频每日一推
7+阅读 · 2019年1月23日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Arxiv
0+阅读 · 2021年5月28日
Arxiv
0+阅读 · 2021年5月25日
VIP会员
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
【TED】什么让我们生病
英语演讲视频每日一推
7+阅读 · 2019年1月23日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Top
微信扫码咨询专知VIP会员