Motivated by the $k$-center problem in location analysis, we consider the \emph{polygon burning} (PB) problem: Given a polygonal domain $P$ with $h$ holes and $n$ vertices, find a set $S$ of $k$ vertices of $P$ that minimizes the maximum geodesic distance from any point in $P$ to its nearest vertex in $S$. Alternatively, viewing each vertex in $S$ as a site to start a fire, the goal is to select $S$ such that fires burning simultaneously and uniformly from $S$, restricted to $P$, consume $P$ entirely as quickly as possible. We prove that PB is NP-hard when $k$ is arbitrary. We show that the discrete $k$-center of the vertices of $P$ under the geodesic metric on $P$ provides a $2$-approximation for PB, resulting in an $O(n^2 \log n + hkn \log n)$-time $3$-approximation algorithm for PB. Lastly, we define and characterize a new type of polygon, the sliceable polygon. A sliceable polygon is a convex polygon that contains no Voronoi vertex from the Voronoi diagram of its vertices. We give a dynamic programming algorithm to solve PB exactly on a sliceable polygon in $O(kn^2)$ time.
翻译:在定位分析中,我们以美元为中心点的问题为动力,我们考虑了 eemph{polygon burning} (PB) 问题:鉴于一个多角域,美元和美元洞和美元脊椎的美元美元,我们发现一套美元和美元脊椎的美元固定值为美元,将美元至美元最接近的顶点之间的最大大地距离最小化为美元S$。或者,如果将每顶脊椎作为美元作为点点点起火,我们的目标是从美元和美元统一燃烧的美元中选择美元S$:鉴于一个多角域域域域,美元有美元洞洞和美元脊椎的美元,我们证明美元是任意的,PB是硬的。我们显示,在Geodegro 时,美元为PB的每个顶点,以美元为美元为美元,因此,在美元(n)2\colon+ hkn=美元同时点点火烧火, 将美元和美元平面的卡路面的卡路面, 将一个新的Vocol-col-acolon 定义为我们的硬卡式的卡式的硬卡。