In the theory of linear switching systems with discrete time, as in other areas of mathematics, the problem of studying the growth rate of the norms of all possible matrix products $A_{\sigma_{n}}\cdots A_{\sigma_{0}}$ with factors from a set of matrices $\mathscr{A}$ arises. So far, only for a relatively small number of classes of matrices $\mathscr{A}$ has it been possible to accurately describe the sequences of matrices that guarantee the maximum rate of increase of the corresponding norms. Moreover, in almost all cases studied theoretically, the index sequences $\{\sigma_{n}\}$ of matrices maximizing the norms of the corresponding matrix products have been shown to be periodic or so-called Sturmian, which entails a whole set of "good" properties of the sequences $\{A_{\sigma_{n}}\}$, in particular the existence of a limiting frequency of occurrence of each matrix factor $A_{i}\in\mathscr{A}$ in them. In the paper it is shown that this is not always the case: a class of matrices is defined consisting of two $2\times 2$ matrices, similar to rotations in the plane, in which the sequence $\{A_{\sigma_{n}}\}$ maximizing the growth rate of the norms $\|A_{\sigma_{n}}\cdots A_{\sigma_{0}}\|$ is not Sturmian. All considerations are based on numerical modeling and cannot be considered mathematically rigorous in this part; rather, they should be interpreted as a set of questions for further comprehensive theoretical analysis.


翻译:在具有离散时间的线性切换系统理论中,如在数学其他领域一样,研究所有可能的矩阵产品(A ⁇ sigma ⁇ n ⁇ ⁇ cdosts A ⁇ sigma ⁇ _0}$)的增长率,加上一组基质的因子($\mathscr{A}}$)。到目前为止,只有数量相对较少的基质类别($\mathscr{A}}}),才有可能准确描述保证相应规范最大增长率的矩阵序列。此外,几乎所有在理论上研究的案例中,将相应矩阵产品规范最大化的指数序列($ ⁇ sgma_ ⁇ n ⁇ }$_cddocks A ⁇ _groductions $_BAR___BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR__BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR__BAR___________________________________________________________________________________b__________________________________________________________________________________________________________________________________________________________________________________________________________

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
195+阅读 · 2019年10月10日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月18日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员