We study almost-envy-freeness in house allocation, where $m$ houses are to be allocated among $n$ agents so that every agent receives exactly one house. An envy-free allocation need not exist, and therefore we may have to settle for relaxations of envy-freeness. But typical relaxations such as envy-free up to one good do not make sense for house allocation, as every agent is required to receive exactly one house. Hence we turn to different aggregate measures of envy as markers of fairness. In particular, we define the amount of envy experienced by an agent $a$ w.r.t. an allocation to be the number of agents that agent $a$ envies under that allocation. We quantify the envy generated by an allocation using three different metrics: 1) the number of agents who are envious; 2) the maximum amount of envy experienced by any agent; and 3) the total amount of envy experienced by all agents, and look for allocations that minimize one of the three metrics. We thus study three computational problems corresponding to each of the three metrics and prove a host of algorithmic and hardness results. We also suggest practical approaches for these problems via integer linear program (ILP) formulations and report the findings of our experimental evaluation of ILPs. Finally, we study the price of fairness (PoF), which quantifies the loss of welfare we must suffer due to the fairness requirements, and we prove a number of results on PoF, including tight bounds as well as algorithms that simultaneously optimize both welfare and fairness.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
84+阅读 · 2022年7月16日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员