360{\deg} cameras have gained popularity over the last few years. In this paper, we propose two fundamental techniques -- Field-of-View IoU (FoV-IoU) and 360Augmentation for object detection in 360{\deg} images. Although most object detection neural networks designed for the perspective images are applicable to 360{\deg} images in equirectangular projection (ERP) format, their performance deteriorates owing to the distortion in ERP images. Our method can be readily integrated with existing perspective object detectors and significantly improves the performance. The FoV-IoU computes the intersection-over-union of two Field-of-View bounding boxes in a spherical image which could be used for training, inference, and evaluation while 360Augmentation is a data augmentation technique specific to 360{\deg} object detection task which randomly rotates a spherical image and solves the bias due to the sphere-to-plane projection. We conduct extensive experiments on the 360indoor dataset with different types of perspective object detectors and show the consistent effectiveness of our method.
翻译:360=deg} 相机在过去几年中越来越受欢迎。 在本文中,我们提出了两种基本技术 -- -- 查看IoU(FoV-IoU)和360AU,用于360=deg}图像中的天体探测。虽然为视觉图像设计的大多数天体探测神经网络都适用于360=deg}图像,但由于ERP(ERP)格式的扭曲,其性能会因ERP图像的扭曲而恶化。我们的方法可以很容易地与现有视景物体探测器结合,并大大改进性能。 FoV-IoU在一种球形图像中,将两个视场捆绑框的交叉连接起来,可用于培训、推断和评价,而360Augation则是一种数据增强技术,具体针对360=deg}天体探测任务,它随机旋转一个球形图像,并解决球形对天体预测的偏差。我们在360门数据集上进行了广泛的实验,使用不同类型的视觉物体探测器,并展示了我们的方法的一贯效力。