We explain how to use Kolmogorov Superposition Theorem (KST) to break the curse of dimension when approximating continuous multivariate functions. We first show that there is a class of functions called $K$-Lipschitz continuous and can be approximated by a ReLU neural network of two layers to have an approximation order $O(d^2/n)$, and then we introduce the K-modulus of continuity of multivariate functions and derive the approximation rate for any continuous function $f\in C([0,1]^d)$ based on KST. Next we introduce KB-splines by using uniform B-splines to replace the K-outer function and their smooth version called LKB-splines to approximate high dimensional functions. Our numerical evidence shows that the curse of dimension is broken in the following sense. When using the standard discrete least squares method (DLS) to approximate a continuous function $f$ over $[0, 1]^d$, one expects to use a dense data set $P$, a large number of data locations and function values over the locations. Based on the LKB splines, the structure of K-inner functions leads to a sparse solution of the linear system associated with the DLS. Furthermore, there exists a magic set of points from $P$ with much small in size such that the rooted mean squares error (RMSE) from the DLS based on the magic set is similar to the RMSE of the DLS based on the original set $P$. In addition, the number of LKB-splines used for approximation is the same as the size of the magic data set. Hence we not need a lot of basis functions and a lot of data locations and function values to approximate a high dimensional continuous function $f$ when $f$ is not very oscillated.
翻译:我们解释如何使用 Kolmogorov Superposition Theorem (KST) 来解开维度的诅咒。 我们首先显示, 在大约连续多变函数时, 我们如何使用 Kolmogorov Superposition Theorem (KST) 来打破维度的诅咒。 我们首先显示, 一种叫做 $K$- Lipschitz 的功能类别, 叫做 $K$- Lipschitz 连续, 可以被两个层次的 ReLLUU 神经网络所近似, 以近似顺序 $O( d ⁇ 2/n) 。 然后我们引入多变函数连续性的 K- model( DLS) 模式, 得出基于 KST 的任何连续函数$f@f\ in C( [0, 1, 1, d) 的接近率率率率率率率率, 而不是以 $P$。 接下来我们引入了 K- spline 的数值, 一个叫数, 一个叫数的GLK- silental 值, 值的数值值的值值值值值值, 值的值值值的值值值值值值值, 值的值值值的值值值值值。 值值值值值值的值的值的值是, 的值的值的值值值是, 的值值值的值值值值值值值值值值值值的值的值的值, 的值, 的值在基值在基值的值的值的值的值的值的值在基值的值的值的值的值的值在基值的值的值的值的值的值的值的值的值在基值的值的值的值的值的值的值的值的值的值的值的值的值的值的值的值在基值的值的值的值的值的值的值的值的值的值的值的值的值的值的值的值的值的值的值的值的值的值的值的值的值的值的值的值的值的值的值的值的值的值的值, 的值的值的值, 的值的值的值的值的值