In this paper we propose the (keyed) permutation Arion and the hash function ArionHash over $\mathbb{F}_p$ for odd and particularly large primes. The design of Arion is based on the newly introduced Generalized Triangular Dynamical System (GTDS), which provides a new algebraic framework for constructing (keyed) permutation using polynomials over a finite field. At round level Arion is the first design which is instantiated using the new GTDS. We provide extensive security analysis of our construction including algebraic cryptanalysis (e.g. interpolation and Gr\"obner basis attacks) that are particularly decisive in assessing the security of permutations and hash functions over $\mathbb{F}_p$. From an application perspective, ArionHash aims for efficient implementation in zkSNARK protocols and Zero-Knowledge proof systems. For this purpose, we exploit that CCZ-equivalence of graphs can lead to a more efficient implementation of Arithmetization-Oriented primitives. We compare the efficiency of ArionHash in R1CS and Plonk settings with other hash functions such as Poseidon, Anemoi and Griffin. For demonstrating the practical efficiency of ArionHash we implemented it with the zkSNARK libraries libsnark and Dusk Network Plonk. Our result shows that ArionHash is significantly faster than Poseidon - a hash function designed for zero-knowledge proof systems. We also found that an aggressive version of ArionHash is considerably faster than Anemoi and Griffin in a practical zkSNARK setting.


翻译:暂无翻译

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
76+阅读 · 2022年6月28日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年7月13日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员