For robots to work alongside humans and perform in unstructured environments, they must learn new motion skills and adapt them to unseen situations on the fly. This demands learning models that capture relevant motion patterns, while offering enough flexibility to adapt the encoded skills to new requirements, such as dynamic obstacle avoidance. We introduce a Riemannian manifold perspective on this problem, and propose to learn a Riemannian manifold from human demonstrations on which geodesics are natural motion skills. We realize this with a variational autoencoder (VAE) over the space of position and orientations of the robot end-effector. Geodesic motion skills let a robot plan movements from and to arbitrary points on the data manifold. They also provide a straightforward method to avoid obstacles by redefining the ambient metric in an online fashion. Moreover, geodesics naturally exploit the manifold resulting from multiple--mode tasks to design motions that were not explicitly demonstrated previously. We test our learning framework using a 7-DoF robotic manipulator, where the robot satisfactorily learns and reproduces realistic skills featuring elaborated motion patterns, avoids previously unseen obstacles, and generates novel movements in multiple-mode settings.


翻译:机器人要与人类一起工作,并在没有结构的环境中表演,他们必须学习新的运动技能,使其适应飞行上无法见的情况。 这要求学习模型能够捕捉相关的运动模式,同时提供足够的灵活性,使编码技能适应新的要求,例如动态障碍避免等。 我们引入了riemannian多方面的观点, 并提议学习人类演示中的里曼尼式的方程式, 而大地测量是自然运动技能。 我们通过对机器人最终作用器的位置和方向空间的变异自动计算器(VAE)认识到这一点。 大地测量运动技能让机器人计划从数据多处移动到任意点, 同时也提供了一种直接的方法, 通过在网上重新定义环境指标来避免障碍。 此外, 地理德性自然地利用由多重模式任务产生的方程式来设计以前没有明确显示的动作。 我们用一个7-DoF机器人操纵器来测试我们的学习框架, 机器人在那里可以令人满意地学习和复制精心设计的运动模式, 避免先前看不见的障碍, 并在多模式环境中产生新的运动。

0
下载
关闭预览

相关内容

【Uber AI新论文】持续元学习,Learning to Continually Learn
专知会员服务
36+阅读 · 2020年2月27日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
MIT新书《强化学习与最优控制》
专知会员服务
276+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年7月31日
Arxiv
6+阅读 · 2018年3月29日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员