In this paper, we propose a new linear-equation ordered-statistics decoding (LE-OSD). Unlike the OSD, LE-OSD uses high reliable parity bits rather than information bits to recover the codeword estimates, which is equivalent to solving a system of linear equations (SLE). Only test error patterns (TEPs) that create feasible SLEs, referred to as the valid TEPs, are used to obtain different codeword estimates. We introduce several constraints on the Hamming weight of TEPs to limit the overall decoding complexity. Furthermore, we analyze the block error rate (BLER) and the computational complexity of the proposed approach. It is shown that LE-OSD has a similar performance as OSD in terms of BLER, which can asymptotically approach Maximum-likelihood (ML) performance with proper parameter selections. Simulation results demonstrate that the LE-OSD has a significantly reduced complexity compared to OSD, especially for low-rate codes, that usually require high decoding order in OSD. Nevertheless, the complexity reduction can also be observed for high-rate codes. In addition, we further improve LE-OSD by applying the decoding stopping condition and the TEP discarding condition. As shown by simulations, the improved LE-OSD has a considerably reduced complexity while maintaining the BLER performance, compared to the latest OSD approach from literature.


翻译:在本文中,我们提出了一个新的线性等分法(LE-OSD)解码(LE-OSD)建议。与OSD不同的是,LE-OSD使用高度可靠的对等比位而不是信息比位来恢复代码估计,这相当于解决线性方程系统(SLE)。只有建立可行的SLE(称为有效的临时选择)的测试错误模式(TEPs),才用于获取不同的代码估计。我们给TEP的含宽度权重设置了几种限制,以限制总体解码复杂性。此外,我们分析了块误差率(GlebR)和拟议方法的计算复杂性。我们发现,LE-OSD在BLER中具有类似于OSD的类似性能表现。 后者可以用适当的参数选择来自动接近最大相似性处理SLE(M)性能。 模拟结果表明,LEO-OS与OS相比复杂性大大降低,通常需要在OSD中添加高解码。 然而,将复杂性降低性能降低到高度,同时通过高压状态。

0
下载
关闭预览

相关内容

【ACL 2021 】ExCAR: 事理图谱增强的可解释因果推理
专知会员服务
46+阅读 · 2021年11月10日
专知会员服务
76+阅读 · 2021年3月16日
【经典书】线性代数,Linear Algebra,525页pdf
专知会员服务
75+阅读 · 2021年1月29日
【经典书】概率理论:科学逻辑,95页pdf
专知会员服务
77+阅读 · 2020年10月18日
【经典书】贝叶斯编程,378页pdf,Bayesian Programming
专知会员服务
247+阅读 · 2020年5月18日
专知会员服务
159+阅读 · 2020年1月16日
已删除
将门创投
5+阅读 · 2019年9月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
LibRec 精选:推荐系统的常用数据集
LibRec智能推荐
17+阅读 · 2019年2月15日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
VIP会员
相关资讯
已删除
将门创投
5+阅读 · 2019年9月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
LibRec 精选:推荐系统的常用数据集
LibRec智能推荐
17+阅读 · 2019年2月15日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Top
微信扫码咨询专知VIP会员