In this paper, we give a tutorial on asymptotic properties of the Least Square (LS) and Regularized Least Squares (RLS) estimators for the finite impulse response model with filtered white noise inputs. We provide three perspectives: the almost sure convergence, the convergence in distribution and the boundedness in probability. On one hand, these properties deepen our understanding of the LS and RLS estimators. On the other hand, we can use them as tools to investigate asymptotic properties of other estimators, such as various hyper-parameter estimators.


翻译:在本文中,我们为带有过滤的白色噪音投入的有限脉冲反应模型的最小广场和固定最低广场(RLS)估算器的无症状特性提供辅导。我们从三个角度提供:几乎可以肯定的趋同、分布的趋同和概率的界限。一方面,这些特性加深了我们对LS和RLS估计器的理解。另一方面,我们可以利用它们作为工具,调查其他测量器,例如各种超参数估计器的无症状特性。

0
下载
关闭预览

相关内容

专知会员服务
51+阅读 · 2020年12月14日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
保序最优传输:Order-preserving Optimal Transport
我爱读PAMI
6+阅读 · 2018年9月16日
Linguistically Regularized LSTMs for Sentiment Classification
黑龙江大学自然语言处理实验室
8+阅读 · 2018年5月4日
Curiosity-driven Exploration 好奇心代码阅读
CreateAMind
4+阅读 · 2018年3月15日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】(Keras)LSTM多元时序预测教程
机器学习研究会
24+阅读 · 2017年8月14日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
On the asymptotic behavior of bubble date estimators
Arxiv
0+阅读 · 2022年2月22日
Arxiv
0+阅读 · 2022年2月21日
Viewpoint Estimation-Insights & Model
Arxiv
3+阅读 · 2018年7月3日
VIP会员
相关VIP内容
专知会员服务
51+阅读 · 2020年12月14日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
保序最优传输:Order-preserving Optimal Transport
我爱读PAMI
6+阅读 · 2018年9月16日
Linguistically Regularized LSTMs for Sentiment Classification
黑龙江大学自然语言处理实验室
8+阅读 · 2018年5月4日
Curiosity-driven Exploration 好奇心代码阅读
CreateAMind
4+阅读 · 2018年3月15日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】(Keras)LSTM多元时序预测教程
机器学习研究会
24+阅读 · 2017年8月14日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员