In this paper, we investigate the problem of system identification for autonomous switched linear systems with complete state observations. We propose switched least squares method for the identification for switched linear systems, show that this method is strongly consistent, and derive data-dependent and data-independent rates of convergence. In particular, our data-dependent rate of convergence shows that, almost surely, the system identification error is $\mathcal{O}\big(\sqrt{\log(T)/T} \big)$ where $T$ is the time horizon. These results show that our method for switched linear systems has the same rate of convergence as least squares method for non-switched linear systems. We compare our results with those in the literature. We present numerical examples to illustrate the performance of the proposed system identification method.
翻译:在本文中,我们用完整的状态观测来调查自动交换线性系统的系统识别问题。我们建议对被交换线性系统的识别方法采用最不平方的方法,表明这一方法非常一致,并得出数据依赖和数据依赖的趋同率。特别是,我们的数据依赖趋同率表明,几乎可以肯定,系统识别错误是$mathcal{O ⁇ big(sqrt log(T)/T}\big)$(美元),其中T$是时间范围。这些结果显示,我们交换线性系统的方法与非交换线性线性系统最不平方方法的趋同率相同。我们将我们的结果与文献中的结果进行比较。我们提供了数字例子,以说明拟议的系统识别方法的性能。