Predicting future human motion plays a significant role in human-machine interactions for various real-life applications. A unified formulation and multi-order modeling are two critical perspectives for analyzing and representing human motion. In contrast to prior works, we improve the multi-order modeling ability of human motion systems for more accurate predictions by building a deep state-space model (DeepSSM). The DeepSSM utilizes the advantages of both the state-space theory and the deep network. Specifically, we formulate the human motion system as the state-space model of a dynamic system and model the motion system by the state-space theory, offering a unified formulation for diverse human motion systems. Moreover, a novel deep network is designed to parameterize this system, which jointly models the state-state transition and state-observation transition processes. In this way, the state of a system is updated by the multi-order information of a time-varying human motion sequence. Multiple future poses are recursively predicted via the state-observation transition. To further improve the model ability of the system, a novel loss, WT-MPJPE (Weighted Temporal Mean Per Joint Position Error), is introduced to optimize the model. The proposed loss encourages the system to achieve more accurate predictions by increasing weights to the early time steps. The experiments on two benchmark datasets (i.e., Human3.6M and 3DPW) confirm that our method achieves state-of-the-art performance with improved accuracy of at least 2.2mm per joint. The code will be available at: \url{https://github.com/lily2lab/DeepSSM.git}.
翻译:预测未来人类运动在人类机器相互作用中对于各种现实生活应用具有重要作用。 统一的配制和多级模型是分析和代表人类运动的两个关键角度。 与先前的工程相比, 我们通过建立深层的状态空间模型( 深空间模型) 改进人类运动系统的多级模型能力, 以更准确地预测人类运动系统。 深空间系统利用州空间理论和深网络的优势。 具体地说, 我们用州空间理论来将人类运动系统作为动态系统的国家- 空间模型和运动系统的模型, 为不同的人类运动系统提供统一的配方。 此外, 一个新的深层次网络旨在将这一系统参数化, 共同模拟国家运动的过渡和州观察转型过程。 深层空间系统的状况通过时间变化的人类运动序列和深层网络的多级信息进行更新。 通过州- 观察转型, 反复预测未来的种种威胁。 为了进一步提高该系统的模型能力, 新的损失, WT- MPJPE( 最低的温度- DPE ) 以及联合定位的运行过程的进度, 将引入最精确的系统。 最优化的模型到最精确的实验 。 以最精确的模型到最精确的顺序的模型, 。 将实现最精确的顺序的顺序的模型到最精确的实验 。 。 至最精确的实验到最精确的实验 。 以最精确的顺序的实验到最精确的顺序 。 。 以最精确的实验 至最精确的顺序 。