This report describes our approach to design and evaluate a software stack for a race car capable of achieving competitive driving performance in the different disciplines of the Formula Student Driverless. By using a 360{\deg} LiDAR and optionally three cameras, we reliably recognize the plastic cones that mark the track boundaries at distances of around 35 m, enabling us to drive at the physical limits of the car. Using a GraphSLAM algorithm, we are able to map these cones with a root-mean-square error of less than 15 cm while driving at speeds of over 70 kph on a narrow track. The high-precision map is used in the trajectory planning to detect the lane boundaries using Delaunay triangulation and a parametric cubic spline. We calculate an optimized trajectory using a minimum curvature approach together with a GGS-diagram that takes the aerodynamics at different velocities into account. To track the target path with accelerations of up to 1.6 g, the control system is split into a PI controller for longitudinal control and model predictive controller for lateral control. Additionally, a low-level optimal control allocation is used. The software is realized in ROS C++ and tested in a custom simulation, as well as on the actual race track.
翻译:本报告描述了我们设计和评估在Famm Student Delistrict的不同学科中能够取得竞争性驾驶性能的赛车的软件堆叠的方法。 通过使用360=deg} LiDAR 和可选的三个摄像头,我们可靠地识别了在35米左右距离内标记轨道边界的塑料锥体, 使我们能在汽车物理极限上驾驶。 使用GigapSLAM算法, 我们能够用根中位方差差差不到15厘米来绘制这些锥体。 在窄轨上, 车速超过70公里, 车速超过70公里。 高精度地图用于轨迹规划中, 使用Delaunay 三角和准立方根螺纹线来探测车道界限。 我们用最小的弯曲法来计算最优化的轨迹, 并用GGS- 直径图来测量汽车的物理极限。 为了跟踪目标路径, 加速到1.6 g, 控制系统被分成一个 PI 控制器, 用于长期控制和模型预测控制器。 此外, 将低水平的轨道控制系统作为内部测试, 最佳控制, 。 在 RO 和 AS 中 进行 最佳的 最佳的 的 测试中 。