Building an accurate model of travel behaviour based on individuals' characteristics and built environment attributes is of importance for policy-making and transportation planning. Recent experiments with big data and Machine Learning (ML) algorithms toward a better travel behaviour analysis have mainly overlooked socially disadvantaged groups. Accordingly, in this study, we explore the travel behaviour responses of low-income individuals to transit investments in the Greater Toronto and Hamilton Area, Canada, using statistical and ML models. We first investigate how the model choice affects the prediction of transit use by the low-income group. This step includes comparing the predictive performance of traditional and ML algorithms and then evaluating a transit investment policy by contrasting the predicted activities and the spatial distribution of transit trips generated by vulnerable households after improving accessibility. We also empirically investigate the proposed transit investment by each algorithm and compare it with the city of Brampton's future transportation plan. While, unsurprisingly, the ML algorithms outperform classical models, there are still doubts about using them due to interpretability concerns. Hence, we adopt recent local and global model-agnostic interpretation tools to interpret how the model arrives at its predictions. Our findings reveal the great potential of ML algorithms for enhanced travel behaviour predictions for low-income strata without considerably sacrificing interpretability.
翻译:根据个人特点和建筑环境属性建立准确的旅行行为模型对于决策和交通规划十分重要。最近对大数据和机器学习算法进行的实验,都忽略了社会处境不利的群体。因此,在本研究中,我们探索低收入个人对在加拿大大多伦多和汉密尔顿地区的过境投资采取的旅行行为对策,使用统计和ML模型。我们首先调查模式选择如何影响低收入群体对过境使用的预测。这一步骤包括比较传统和ML算法的预测性能,然后通过对比预测的活动和脆弱家庭在改善无障碍之后产生的过境旅行的空间分布来评价过境投资政策。我们还从经验上调查了每一种算法的拟议过境投资,并将其与布伦普市未来的运输计划进行比较。虽然不令人惊讶的是,ML算法超越了典型模式,但对于使用这些模式是否值得解释的问题仍然存有疑问。因此,我们采用了最近的本地和全球模型解释工具来解释模型在预测时是如何到达的,对脆弱家庭在改善无障碍后产生的过境旅行空间分布进行了比较。我们的调查结果还从经验上对每一种拟议中的过境投资进行了调查,并将它与布安普顿市未来的运输计划进行比较。我们发现,对低度对低度作出了巨大的风险的估价。对低度的估价,对低度作出了巨大的研究。对低度的估价。对低度作出了巨大的分析。