There has been growing interest on forecasting mortality. In this article, we propose a novel dynamic Bayesian approach for modeling and forecasting the age-at-death distribution, focusing on a three-components mixture of a Dirac mass, a Gaussian distribution and a Skew-Normal distribution. According to the specified model, the age-at-death distribution is characterized via seven parameters corresponding to the main aspects of infant, adult and old-age mortality. The proposed approach focuses on coherent modeling of multiple countries, and following a Bayesian approach to inference we allow to borrow information across populations and to shrink parameters towards a common mean level, implicitly penalizing diverging scenarios. Dynamic modeling across years is induced trough an hierarchical dynamic prior distribution that allows to characterize the temporal evolution of each mortality component and to forecast the age-at-death distribution. Empirical results on multiple countries indicate that the proposed approach outperforms popular methods for forecasting mortality, providing interpretable insights on the evolution of mortality.


翻译:人们对预测死亡率的兴趣日益浓厚。在本篇文章中,我们建议采用新的、动态的贝叶西亚方法,对死亡年龄分布进行建模和预测,重点是Dirac质量、Gaussian分布和Skew-Nalmal分布的三分成分混合体。根据特定模型,死亡年龄分布通过与婴儿、成人和老年人死亡率主要方面相对应的七个参数加以定性。拟议方法侧重于对多个国家进行连贯的建模,并采用巴伊西亚方法,推断我们允许在人口之间借取信息,并将参数缩到共同平均水平,隐含对不同情况的处罚。不同年份动态建模在前的等级分布中经过了分级动态,从而可以说明每个死亡率组成部分的时间演变情况并预测死亡年龄分布情况。关于多个国家的实证结果表明,拟议方法优于预测死亡率的流行方法,提供了可解释的死亡率演变情况。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
【MIT深度学习课程】深度序列建模,Deep Sequence Modeling
专知会员服务
77+阅读 · 2020年2月3日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年3月24日
Arxiv
6+阅读 · 2018年1月29日
Arxiv
4+阅读 · 2018年1月15日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员