We study the complexity of computing a uniform Nash equilibrium on a bimatrix game. It is known that such a problem is NP-complete even if a bimatrix game is win-lose [BIL08]. Fortunately, if a win-lose bimatrix game is planar, then uniform Nash equilibria always exist. We have a polynomial-time algorithm for finding a uniform Nash equilibrium of a planar win-lose bimatrix game [AOV07]. The following question is left: How hard to determine the existence of uniform Nash equilibria of a planar bimatrix game not necessarily win-lose? This paper resolves this issue. We prove that the problem of deciding whether a planar bimatrix game such that both players' payoff matrices consist of two types of non-zero elements has uniform Nash equilibria is also NP-complete.
翻译:我们研究了在双马基游戏上计算统一的纳什平衡的复杂性。 众所周知, 即使双马基游戏是双赢的, 这样的问题也是NP- 完整的。 幸运的是, 如果双马基游戏是双马基游戏, 那么统一的纳什平衡总是存在的。 我们有一个多元时间算法, 用于在双马基游戏上找到一个统一的纳什平衡。 问题如下: 很难确定一个双马基游戏( 不一定是双马基游戏)是否存在统一的纳什平衡? 本文解决了这个问题。 我们证明, 确定一个双马基游戏( 双马基游戏 ) 是否由两种非零元素组成的双马基游戏( 双马基游戏 ) 是否具有统一的纳什双马基游戏( Nash equimatric) 的问题也已完成 NP 。