In this article, we employ a collection of stochastic differential equations with drift and diffusion coefficients approximated by neural networks to predict the trend of chaotic time series which has big jump properties. Our contributions are, first, we propose a model called L\'evy induced stochastic differential equation network, which explores compounded stochastic differential equations with $\alpha$-stable L\'evy motion to model complex time series data and solve the problem through neural network approximation. Second, we theoretically prove that the numerical solution through our algorithm converges in probability to the solution of corresponding stochastic differential equation, without curse of dimensionality. Finally, we illustrate our method by applying it to real financial time series data and find the accuracy increases through the use of non-Gaussian L\'evy processes. We also present detailed comparisons in terms of data patterns, various models, different shapes of L\'evy motion and the prediction lengths.
翻译:在文章中,我们用一系列具有神经网络所近似漂移和扩散系数的随机差分方程式来预测具有巨大跳跃特性的混乱时间序列趋势。 我们的贡献是,首先,我们提出一个名为L\'evy诱发的随机差分方程网络的模式,该模式探索以$\alpha$- sable L\'evy 运动来模拟复杂时间序列数据的复合随机差分方程式,并通过神经网络近似来解决问题。第二,我们理论上证明,通过我们的算法的数值解决方案在概率上会与相应的随机差分方程式的解决方案相汇,而不会给维度带来诅咒。最后,我们通过将它应用到实际财务时间序列数据中来说明我们的方法,并通过使用非Gausian L\'evy过程来发现准确性提高的准确性。我们还在数据模式、各种模型、L\'evy运动的不同形状和预测长度方面进行了详细的比较。