We present an algorithmic contribution to improve the efficiency of robust trim-fitting in outlier affected geometric regression problems. The method heavily relies on the quick sort algorithm, and we present two important insights. First, partial sorting is sufficient for the incremental calculation of the x-th percentile value. Second, the normal equations in linear fitting problems may be updated incrementally by logging swap operations across the x-th percentile boundary during sorting. Besides linear fitting problems, we demonstrate how the technique can be additionally applied to closed-form, non-linear energy minimization problems, thus enabling efficient trim fitting under geometrically optimal objectives. We apply our method to two distinct camera resectioning algorithms, and demonstrate highly efficient and reliable, geometric trim fitting.
翻译:我们展示了一种算法贡献, 来提高强力三角配置的效率, 以应对远端受影响的几何回归问题。 这种方法在很大程度上依赖于快速排序算法, 我们展示了两种重要的洞察力。 首先, 部分分类足以逐步计算 X 百分位值。 其次, 线性调整问题的正常方程式可以通过排序过程中的X百分位边界的伐木转换操作来逐步更新。 除了线性调整问题之外, 我们演示了该技术如何被进一步应用于封闭式的非线性能源最小化问题, 从而使得高效的三角配置在几何性最佳目标下得以实现。 我们应用了两种不同的相机重新分类算法, 并展示了高效和可靠的几何三重配置。