Subspaces obtained by the orthogonal projection of locally supported square-integrable vector fields onto the Hardy spaces $H_+(\mathbb{S})$ and $H_-(\mathbb{S})$, respectively, play a role in various inverse potential field problems since they characterize the uniquely recoverable components of the underlying sources. Here, we consider approximation in these subspaces by a particular set of spherical basis functions. Error bounds are provided along with further considerations on norm-minimizing vector fields that satisfy the underlying localization constraint. The new aspect here is that the used spherical basis functions are themselves members of the subspaces under consideration.
翻译:暂无翻译