Vision and Language Navigation (VLN) requires an agent to navigate to a target location by following natural language instructions. Most of existing works represent a navigation candidate by the feature of the corresponding single view where the candidate lies in. However, an instruction may mention landmarks out of the single view as references, which might lead to failures of textual-visual matching of existing methods. In this work, we propose a multi-module Neighbor-View Enhanced Model (NvEM) to adaptively incorporate visual contexts from neighbor views for better textual-visual matching. Specifically, our NvEM utilizes a subject module and a reference module to collect contexts from neighbor views. The subject module fuses neighbor views at a global level, and the reference module fuses neighbor objects at a local level. Subjects and references are adaptively determined via attention mechanisms. Our model also includes an action module to utilize the strong orientation guidance (e.g., ``turn left'') in instructions. Each module predicts navigation action separately and their weighted sum is used for predicting the final action. Extensive experimental results demonstrate the effectiveness of the proposed method on the R2R and R4R benchmarks against several state-of-the-art navigators, and NvEM even beats some pre-training ones. Our code is available at https://github.com/MarSaKi/NvEM.


翻译:视觉和语言导航( VLN) 要求一个代理人遵循自然语言指令, 导航到目标位置。 多数现有作品代表了导航候选者, 其特征是候选人所在的对应单一视图的特性。 但是, 指令可能提到单个视图中的里程碑作为参考, 可能导致现有方法的文本- 视觉匹配失败。 在这项工作中, 我们提议了一个多模块 Neighbor- View 强化模型( NvEM), 以适应的方式将邻居观点的视觉环境纳入其中, 以便更好的文本- 视觉匹配。 具体地说, 我们的NvEM 模型使用一个主题模块和参考模块, 收集邻居观点的背景。 主题模块将全球的邻居观点连接起来, 引用模块将相邻对象连接到本地一级的物体。 主题和引用通过关注机制来适应性地决定。 我们的模型还包括一个行动模块, 以在指令中使用强有力的方向指导( 例如, " 左转 " ) 。 每个模块分别预测导航行动, 其加权总数用于预测最后行动。 广泛的实验结果显示在R2R 和 R4R 和 R4R 培训前 我们的系统/ R4Ra- train 中的一些 和 Rav- train 和 Rav- train 某些现有标准是某些标准的有效性。

0
下载
关闭预览

相关内容

【KDD2021】图神经网络,NUS- Xavier Bresson教授
专知会员服务
63+阅读 · 2021年8月20日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
TCN v2 + 3Dconv 运动信息
CreateAMind
4+阅读 · 2019年1月8日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
大神 一年100篇论文
CreateAMind
15+阅读 · 2018年12月31日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】视频目标分割基础
机器学习研究会
9+阅读 · 2017年9月19日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
VIP会员
相关资讯
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
TCN v2 + 3Dconv 运动信息
CreateAMind
4+阅读 · 2019年1月8日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
大神 一年100篇论文
CreateAMind
15+阅读 · 2018年12月31日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】视频目标分割基础
机器学习研究会
9+阅读 · 2017年9月19日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员