We study a robust, i.e. in presence of malicious participants, multi-agent multi-armed bandit problem where multiple participants are distributed on a fully decentralized blockchain, with the possibility of some being malicious. The rewards of arms are homogeneous among the honest participants, following time-invariant stochastic distributions, which are revealed to the participants only when certain conditions are met to ensure that the coordination mechanism is secure enough. The coordination mechanism's objective is to efficiently ensure the cumulative rewards gained by the honest participants are maximized. To this end, we are the first to incorporate advanced techniques from blockchains, as well as novel mechanisms, into such a cooperative decision making framework to design optimal strategies for honest participants. This framework allows various malicious behaviors and the maintenance of security and participant privacy. More specifically, we select a pool of validators who communicate to all participants, design a new consensus mechanism based on digital signatures for these validators, invent a UCB-based strategy that requires less information from participants through secure multi-party computation, and design the chain-participant interaction and an incentive mechanism to encourage participants' participation. Notably, we are the first to prove the theoretical regret of the proposed algorithm and claim its optimality. Unlike existing work that integrates blockchains with learning problems such as federated learning which mainly focuses on optimality via computational experiments, we demonstrate that the regret of honest participants is upper bounded by $\log{T}$ under certain assumptions. The regret bound is consistent with the multi-agent multi-armed bandit problem, both without malicious participants and with purely Byzantine attacks which do not affect the entire system.
翻译:暂无翻译