We generalize the idea of relaxation time stepping methods in order to preserve multiple nonlinear conserved quantities of a dynamical system by projecting along directions defined by multiple time stepping algorithms. Similar to the directional projection method of Calvo et. al., we use embedded Runge-Kutta methods to facilitate this in a computationally efficient manner. Proof of the accuracy of the modified RK methods and the existence of valid relaxation parameters are given, under some restrictions. Among other examples, we apply this technique to Implicit-Explicit Runge-Kutta time integration for the Korteweg-de Vries equation and investigate the feasibility and effect of conserving multiple invariants for multi-soliton solutions.
翻译:我们推广了放松时间踏步方法的概念,以便按照多次时间踏步算法确定的方向,保存多种非线性节能动态系统的数量。与卡尔沃等人的方向投影方法类似,我们使用嵌入的龙格-库塔方法,以计算效率的方式促进这一点。根据一些限制,提供了经修改的RK方法准确性和存在有效放松参数的证明。除其他例子外,我们将这一技术应用于Korteweg-de Vries等式的隐性显性龙格-库塔时间集成,并调查为多寡利通解决方案保护多种变异物的可行性和效果。