Algorithms for model checking and satisfiability of the modal $\mu$-calculus start by converting formulas to alternating parity tree automata. Thus, model checking is reduced to checking acceptance by tree automata and satisfiability to checking their emptiness. The first reduces directly to the solution of parity games but the second is more complicated. We review the non-emptiness checking of alternating tree automata by a reduction to solving parity games of a certain structure, so-called emptiness games. Since the emptiness problem for alternating tree automata is EXPTIME-complete, the size of these games is exponential in the number of states of the input automaton. We show how the construction of the emptiness games combines a (fixed) structural part with (history-)determinization of parity word automata. For tree automata with certain syntactic structures, simpler methods may be used to handle the treatment of the word automata, which then may be asymptotically smaller than in the general case. These results have direct consequences in satisfiability and validity checking for (various fragments of) the modal $\mu$-calculus.
翻译:模型检查的算法和模式值的相对性。 模型检查的算法以将公式转换成对等树自动自动模型开始, 将公式转换成对等树的对等性值。 因此, 模型检查将缩小为检查树的自动图和对等性以检查其空虚。 第一个直接降低为对等游戏的解决方案, 但第二个则更为复杂 。 我们审查对交替树自动图的不纯度检查, 将它降为解决某种结构的对等游戏, 即所谓的“ 空游戏 ” 。 由于树自动图交替的空性问题是EXPTIME- 完成的, 这些游戏的大小在输入自动图的状态中是成倍的 。 我们展示了空性游戏的构造是如何将一个( 固定的) 结构部分与( 历史- ) 等式自动图词定义结合起来的 。 对于树自动图和某些合成结构, 可以使用更简便的方法来处理自动图词的处理, 自动图的处理问题可能比一般情况下的数值要小得多, 自动图案的大小。 这些结果在磁性中具有直接的结果。 磁性 。