We study two-player concurrent stochastic games on finite graphs, with B\"uchi and co-B\"uchi objectives. The goal of the first player is to maximize the probability of satisfying the given objective. Following Martin's determinacy theorem for Blackwell games, we know that such games have a value. Natural questions are then: does there exist an optimal strategy, that is, a strategy achieving the value of the game? what is the memory required for playing (almost-)optimally? The situation is rather simple to describe for turn-based games, where positional pure strategies suffice to play optimally in games with parity objectives. Concurrency makes the situation intricate and heterogeneous. For most {\omega}-regular objectives, there do indeed not exist optimal strategies in general. For some objectives (that we will mention), infinite memory might also be required for playing optimally or almost-optimally. We also provide characterizations of local interactions of the players to ensure positionality of (almost-)optimal strategies for B\"uchi and co-B\"uchi objectives. This characterization relies on properties of game forms underpinning the formalism for defining local interactions of the two players. These well-behaved game forms are like elementary bricks which, when they behave well in isolation, can be assembled in graph games and ensure the good property for the whole game.
翻译:我们研究的是两个玩家同时同时在限定图形上玩的游戏, B\\\“uchi” 和 co-B\” uchi 目标。 第一个玩家的目标是最大限度地提高满足既定目标的概率。 在马丁对布莱克韦尔游戏的确定性理论后, 我们知道这种游戏具有价值。 自然的问题是: 是否有最佳策略, 即 实现游戏价值的战略? 玩游戏( 几乎) 所需要的记忆是什么? 转盘游戏的描述非常简单, 定位纯净战略足以在对等游戏中以对等目标最优化地玩耍。 调情使情况变得复杂和复杂。 对于大多数千差万别游戏的常规目标来说, 我们确实没有最佳的战略。 对于某些目标( 我们将提到的目标), 可能还需要无限的记忆来进行最佳或接近游戏价值的游戏。 我们还提供玩家( 最接近) 游戏的本地互动的描述性能, 以确保( 最优化的) 定位策略在游戏中以对等平等的游戏的游戏中。 在游戏中, 这样的游戏中, 这些游戏的游戏的游戏的特性在形式上, 可以以平整的游戏的形态上, 的游戏的游戏的游戏的形态中, 以其形式, 能够以固定形式来决定游戏的特性。