Hyperdimensional computing (HDC) is a biologically-inspired framework that uses high-dimensional vectors and various vector operations to represent and manipulate symbols. The ensemble of a particular vector space and two vector operations (one addition-like for "bundling" and one outer-product-like for "binding") form what is called a "vector symbolic architecture" (VSA). While VSAs have been employed in numerous applications and studied empirically, many theoretical questions about VSAs remain open. We provide theoretical analyses for the *representation capacities* of three popular VSAs: MAP-I, MAP-B, and Binary Sparse. Representation capacity here refers to upper bounds on the dimensions of the VSA vectors required to perform certain symbolic tasks (such as testing for set membership $i \in S$ and estimating set intersection sizes $|S \cap T|$) to a given degree of accuracy. We also describe a relationship between the MAP-I VSA to Hopfield networks, which are simple models of associative memory, and analyze the ability of Hopfield networks to perform some of the same tasks that are typically asked of VSAs. Our analysis of MAP-I casts the VSA vectors as the outputs of *sketching* (dimensionality reduction) algorithms such as the Johnson-Lindenstrauss transform; this provides a clean, simple framework for obtaining bounds on MAP-I's representation capacity. We also provide, to our knowledge, the first analysis of testing set membership in a bundle of general pairwise bindings from MAP-I. Binary sparse VSAs are well-known to be related to Bloom filters; we give analyses of set intersection for Bloom and Counting Bloom filters. Our analysis of MAP-B and Binary Sparse bundling include new applications of several concentration inequalities.


翻译:超高度计算( HDC) 是一个生物启发性的框架, 它使用高维矢量和各种矢量操作来代表和操控符号。 特定矢量空间和两个矢量操作的组合( 一个“ 组合” 和 一个“ 绑定” 的外产品类组合) 形成一个叫做“ 矢量符号架构( VSA) 的“ 矢量符号架构( VSA) ” 。 虽然 VSA 在许多应用中被使用并研究过, 许多关于 VSA 的理论问题仍然开放。 我们为三种广受欢迎的 VSA 的 * 代表能力提供了理论分析 : MAP- I 、 MAP- B 和 Binary Spress 。 这里的表示能力是指执行某些符号任务( 设定成份数 $ = S. 美元, 估计设定的设定相交点大小 $ +S\ capc T ⁇ 。 我们还描述MSA 的首次 和 Hopfield 网络之间的关系, 是一个简单的连接记忆模型, 并分析 跳地的网络的路径网络的变变变变变变变的功能网络的能力, 我们的Oal- dal- dalalalalalalalalalalal 分析, 分析通常要求的 VSA 的SA 将提供的O 的 流值 的 的 的 的 的 的算的 Rental- s malals 。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年3月16日
Arxiv
0+阅读 · 2023年3月16日
Neural Architecture Search without Training
Arxiv
10+阅读 · 2021年6月11日
Arxiv
12+阅读 · 2018年9月5日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员