Hyperdimensional computing (HDC) is a biologically-inspired framework that uses high-dimensional vectors and various vector operations to represent and manipulate symbols. The ensemble of a particular vector space and two vector operations (one addition-like for "bundling" and one outer-product-like for "binding") form what is called a "vector symbolic architecture" (VSA). While VSAs have been employed in numerous applications and studied empirically, many theoretical questions about VSAs remain open. We provide theoretical analyses for the *representation capacities* of three popular VSAs: MAP-I, MAP-B, and Binary Sparse. Representation capacity here refers to upper bounds on the dimensions of the VSA vectors required to perform certain symbolic tasks (such as testing for set membership $i \in S$ and estimating set intersection sizes $|S \cap T|$) to a given degree of accuracy. We also describe a relationship between the MAP-I VSA to Hopfield networks, which are simple models of associative memory, and analyze the ability of Hopfield networks to perform some of the same tasks that are typically asked of VSAs. Our analysis of MAP-I casts the VSA vectors as the outputs of *sketching* (dimensionality reduction) algorithms such as the Johnson-Lindenstrauss transform; this provides a clean, simple framework for obtaining bounds on MAP-I's representation capacity. We also provide, to our knowledge, the first analysis of testing set membership in a bundle of general pairwise bindings from MAP-I. Binary sparse VSAs are well-known to be related to Bloom filters; we give analyses of set intersection for Bloom and Counting Bloom filters. Our analysis of MAP-B and Binary Sparse bundling include new applications of several concentration inequalities.
翻译:超高度计算( HDC) 是一个生物启发性的框架, 它使用高维矢量和各种矢量操作来代表和操控符号。 特定矢量空间和两个矢量操作的组合( 一个“ 组合” 和 一个“ 绑定” 的外产品类组合) 形成一个叫做“ 矢量符号架构( VSA) 的“ 矢量符号架构( VSA) ” 。 虽然 VSA 在许多应用中被使用并研究过, 许多关于 VSA 的理论问题仍然开放。 我们为三种广受欢迎的 VSA 的 * 代表能力提供了理论分析 : MAP- I 、 MAP- B 和 Binary Spress 。 这里的表示能力是指执行某些符号任务( 设定成份数 $ = S. 美元, 估计设定的设定相交点大小 $ +S\ capc T ⁇ 。 我们还描述MSA 的首次 和 Hopfield 网络之间的关系, 是一个简单的连接记忆模型, 并分析 跳地的网络的路径网络的变变变变变变变的功能网络的能力, 我们的Oal- dal- dalalalalalalalalalalal 分析, 分析通常要求的 VSA 的SA 将提供的O 的 流值 的 的 的 的 的 的算的 Rental- s malals 。