In this paper we propose a tool for high-dimensional approximation based on trigonometric polynomials where we allow only low-dimensional interactions of variables. In a general high-dimensional setting, it is already possible to deal with special sampling sets such as sparse grids or rank-1 lattices. This requires black-box access to the function, i.e., the ability to evaluate it at any point. Here, we focus on scattered data points and grouped frequency index sets along the dimensions. From there we propose a fast matrix-vector multiplication, the grouped Fourier transform, for high-dimensional grouped index sets. Those transformations can be used in the application of the previously introduced method of approximating functions with low superposition dimension based on the analysis of variance (ANOVA) decomposition where there is a one-to-one correspondence from the ANOVA terms to our proposed groups. The method is able to dynamically detected important sets of ANOVA terms in the approximation. In this paper, we consider the involved least-squares problem and add different forms of regularization: Classical Tikhonov-regularization, namely, regularized least squares and the technique of group lasso, which promotes sparsity in the groups. As for the latter, there are no explicit solution formulas which is why we applied the fast iterative shrinking-thresholding algorithm to obtain the minimizer. Moreover, we discuss the possibility of incorporating smoothness information into the least-squares problem. Numerical experiments in under-, overdetermined, and noisy settings indicate the applicability of our algorithms. While we consider periodic functions, the idea can be directly generalized to non-periodic functions as well.


翻译:在本文中, 我们提出一个基于三角测量多元度的高维近距离工具, 在那里我们只允许变量的低维互动。 在一般的高维环境中, 已经有可能处理特殊抽样组, 如空格或一级至一级拉特提基。 这需要黑箱访问函数, 也就是说, 可以在任何一点上评估它。 这里, 我们集中关注分散的数据点和沿维维度分组的频率指数组。 从这里我们建议快速矩阵- 通用变量乘法, 组合的 Freier 变异, 用于高维组合的指数组。 这些变异可以用于应用先前引入的相近功能, 以差异分析( NOVA) 或级-1 级至 级值分析, 需要黑箱访问该函数, 即从 ANOVA 术语到我们提议的组进行一对一对一的对应。 方法可以动态地检测到 ANOVA 值的一些重要组。 在本文中, 我们考虑的最小平面问题, 并增加不同形式的正规化 : 典型的 Tikhal- col- col- rocal- rode the the lader the lax lax lax lax lax lady lax lax lax lax lax lax lax lax lax lax lax lax lax lax laut lax lax lax lax lax uncil dol lad lax lax laut laut laut lax lad dold dold

0
下载
关闭预览

相关内容

Group一直是研究计算机支持的合作工作、人机交互、计算机支持的协作学习和社会技术研究的主要场所。该会议将社会科学、计算机科学、工程、设计、价值观以及其他与小组工作相关的多个不同主题的工作结合起来,并进行了广泛的概念化。官网链接:https://group.acm.org/conferences/group20/
【硬核书】矩阵代数基础,248页pdf
专知会员服务
85+阅读 · 2021年12月9日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
已删除
将门创投
11+阅读 · 2019年4月26日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
VIP会员
相关VIP内容
【硬核书】矩阵代数基础,248页pdf
专知会员服务
85+阅读 · 2021年12月9日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
已删除
将门创投
11+阅读 · 2019年4月26日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
Top
微信扫码咨询专知VIP会员