Knowledge Graph Embeddings (KGE) aim to map entities and relations to low dimensional spaces and have become the \textit{de-facto} standard for knowledge graph completion. Most existing KGE methods suffer from the sparsity challenge, where it is harder to predict entities that appear less frequently in knowledge graphs. In this work, we propose a novel framework KRACL to alleviate the widespread sparsity in KGs with graph context and contrastive learning. Firstly, we propose the Knowledge Relational Attention Network (KRAT) to leverage the graph context by simultaneously projecting neighboring triples to different latent spaces and jointly aggregating messages with the attention mechanism. KRAT is capable of capturing the subtle semantic information and importance of different context triples as well as leveraging multi-hop information in knowledge graphs. Secondly, we propose the knowledge contrastive loss by combining the contrastive loss with cross entropy loss, which introduces more negative samples and thus enriches the feedback to sparse entities. Our experiments demonstrate that KRACL achieves superior results across various standard knowledge graph benchmarks, especially on WN18RR and NELL-995 which have large numbers of low in-degree entities. Extensive experiments also bear out KRACL's effectiveness in handling sparse knowledge graphs and robustness against noisy triples.


翻译:知识嵌入图(KGE)旨在映射实体和与低维空间的关系,并成为知识图完成的“知识图”标准。大多数现有的“知识图”方法都面临“广度”挑战,在这种挑战中,很难预测在知识图中出现较少出现的实体。在这项工作中,我们提议了一个“KRACL”新框架,以图示背景和对比性学习来缓解KGs中普遍存在的广度。首先,我们提议知识关系关注网络(KRAT)利用图形环境来利用图形环境,同时向不同潜在空间投射三重相邻的三重图像,并与关注机制联合汇总信息。“KRAT”能够捕捉到不同背景的微妙语义信息和重要性三重以及利用知识图中多点信息的重要性。第二,我们建议将对比性损失与交叉星体损失结合起来,从而引入更负面的样本,从而丰富对稀薄实体的反馈。我们的实验表明,KRACLL在各种标准知识图表基准中取得了优异的结果,特别是在WN18RRRR和NELL95 30-995 高分辨率的模型中,在高水平上也具有了高分辨率的高度的深度研究。

0
下载
关闭预览

相关内容

通过学习、实践或探索所获得的认识、判断或技能。
Meta最新WWW2022《联邦计算导论》教程,附77页ppt
专知会员服务
59+阅读 · 2022年5月5日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
20+阅读 · 2021年9月22日
Arxiv
10+阅读 · 2021年2月26日
VIP会员
相关资讯
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员