Self-supervised visual representation methods are closing the gap with supervised learning performance. These methods rely on maximizing the similarity between embeddings of related synthetic inputs created through data augmentations. This can be seen as a task that encourages embeddings to leave out factors modified by these augmentations, i.e. to be invariant to them. However, this only considers one side of the trade-off in the choice of the augmentations: they need to strongly modify the images to avoid simple solution shortcut learning (e.g. using only color histograms), but on the other hand, augmentations-related information may be lacking in the representations for some downstream tasks (e.g. color is important for birds and flower classification). Few recent works proposed to mitigate the problem of using only an invariance task by exploring some form of equivariance to augmentations. This has been performed by learning additional embeddings space(s), where some augmentation(s) cause embeddings to differ, yet in a non-controlled way. In this work, we introduce EquiMod a generic equivariance module that structures the learned latent space, in the sense that our module learns to predict the displacement in the embedding space caused by the augmentations. We show that applying that module to state-of-the-art invariance models, such as SimCLR and BYOL, increases the performances on CIFAR10 and ImageNet datasets. Moreover, while our model could collapse to a trivial equivariance, i.e. invariance, we observe that it instead automatically learns to keep some augmentations-related information beneficial to the representations.
翻译:自我监督的视觉显示方法正在缩小与受监管的学习性能的差距。 这些方法依赖于在通过数据增强创造的相关合成投入的嵌入中, 最大限度地缩小通过数据增强产生的相关合成投入之间的相似性。 这可以被视为鼓励嵌入, 以排除因这些增强而改变的因素, 即对其不易变。 然而, 这仅仅考虑到在选择增强时的权衡的一方面: 它们需要大力修改图像以避免简单解决方案的捷径学习( 仅使用彩色直方图) 。 但另一方面, 某些下游任务( 例如, 颜色对鸟类和花卉分类很重要) 的表述中可能缺乏与增强相关的信息。 这可被视为一项鼓励嵌入, 以排除由这些增量选择的某种变异性。 然而, 这仅仅是通过学习额外的嵌入空间, 某些增强( ) 导致模型嵌入模型, 而不是以非控制的方式。 在这项工作中, 我们引入了一种普通的宽度变异性模型, 将一个普通的变化模型, 将一个隐化的变异性模块 构建了潜化空间的变异性模型, 我们的变化模块显示了这些变异性模型, 。