With the increasing widely spread digital media become using in most fields such as medical care, Oceanography, Exploration processing, security purpose, military fields and astronomy, evidence in criminals and more vital fields and then digital Images become have different appreciation values according to what is important of carried information by digital images. Due to the easy manipulation property of digital images (by proper computer software) makes us doubtful when are juries using digital images as forensic evidence in courts, especially, if the digital images are main evidence to demonstrate the relationship between suspects and the criminals. Obviously, here demonstrate importance of data Originality Protection methods to detect unauthorized process like modification or duplication and then enhancement protection of evidence to guarantee rights of incriminatory. In this paper, we shall introduce a novel digital forensic security framework for digital image authentication and originality identification techniques and related methodologies, algorithms and protocols that are applied on camera captured images. The approach depends on implanting secret code into RGB images that should indicate any unauthorized modification on the image under investigation. The secret code generation depends mainly on two main parameter types, namely the image characteristics and capturing device identifier. In this paper, the architecture framework will be analyzed, explained and discussed together with the associated protocols, algorithms and methodologies. Also, the secret code deduction and insertion techniques will be analyzed and discussed, in addition to the image benchmarking and quality testing techniques.


翻译:随着数字媒体在医疗、海洋学、勘探处理、安全目的、军事领域和天文学等大多数领域日益广泛使用,在犯罪分子和更重要领域的证据和证据中,数字图像根据数字图像携带的信息的重要性而具有不同的评价价值。由于数字图像(通过适当的计算机软件)的简单操作属性,在法院使用数字图像作为法医证据时,特别是如果数字图像是表明嫌疑人和罪犯之间关系的主要证据时,数字媒体在陪审团中变得令人怀疑。很显然,这里显示了数据原始保护方法的重要性,以探测未经授权的进程,如修改或重复,然后加强证据保护,以保证犯罪权。在本文件中,我们将为数字图像认证和原创识别技术及相关方法、算法和协议引入新的数字法医安全框架,该方法取决于将什么秘密代码植入RGB图像,这应该表明对所调查的图像的任何未经授权的修改。秘密代码的生成主要取决于两种主要参数类型,即图像特征和采集设备标识。在本文件中,将分析、解释和讨论和讨论与基准测试相关的程序、测试方法相关的方法的升级和插入。

0
下载
关闭预览

相关内容

Processing 是一门开源编程语言和与之配套的集成开发环境(IDE)的名称。Processing 在电子艺术和视觉设计社区被用来教授编程基础,并运用于大量的新媒体和互动艺术作品中。
专知会员服务
51+阅读 · 2021年8月8日
【DeepMind】多模态预训练模型概述,37页ppt
专知会员服务
94+阅读 · 2021年7月2日
最新《Transformers模型》教程,64页ppt
专知会员服务
312+阅读 · 2020年11月26日
专知会员服务
61+阅读 · 2020年3月19日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
CCF推荐 | 国际会议信息10条
Call4Papers
8+阅读 · 2019年5月27日
计算机 | ICDE 2020等国际会议信息8条
Call4Papers
3+阅读 · 2019年5月24日
CCF C类 | DSAA 2019 诚邀稿件
Call4Papers
6+阅读 · 2019年5月13日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
计算机 | ISMAR 2019等国际会议信息8条
Call4Papers
3+阅读 · 2019年3月5日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
计算机类 | SIGMETRICS 2019等国际会议信息7条
Call4Papers
9+阅读 · 2018年10月23日
计算机 | CCF推荐会议信息10条
Call4Papers
5+阅读 · 2018年10月18日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
Arxiv
0+阅读 · 2021年11月26日
Deep Learning for Deepfakes Creation and Detection
Arxiv
6+阅读 · 2019年9月25日
Arxiv
6+阅读 · 2018年1月14日
VIP会员
相关VIP内容
专知会员服务
51+阅读 · 2021年8月8日
【DeepMind】多模态预训练模型概述,37页ppt
专知会员服务
94+阅读 · 2021年7月2日
最新《Transformers模型》教程,64页ppt
专知会员服务
312+阅读 · 2020年11月26日
专知会员服务
61+阅读 · 2020年3月19日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
CCF推荐 | 国际会议信息10条
Call4Papers
8+阅读 · 2019年5月27日
计算机 | ICDE 2020等国际会议信息8条
Call4Papers
3+阅读 · 2019年5月24日
CCF C类 | DSAA 2019 诚邀稿件
Call4Papers
6+阅读 · 2019年5月13日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
计算机 | ISMAR 2019等国际会议信息8条
Call4Papers
3+阅读 · 2019年3月5日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
计算机类 | SIGMETRICS 2019等国际会议信息7条
Call4Papers
9+阅读 · 2018年10月23日
计算机 | CCF推荐会议信息10条
Call4Papers
5+阅读 · 2018年10月18日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
相关论文
Top
微信扫码咨询专知VIP会员