Image manipulation and forgery detection have been a topic of research for more than a decade now. New-age tools and large-scale social platforms have given space for manipulated media to thrive. These media can be potentially dangerous and thus innumerable methods have been designed and tested to prove their robustness in detecting forgery. However, the results reported by state-of-the-art systems indicate that supervised approaches achieve almost perfect performance but only with particular datasets. In this work, we analyze the issue of out-of-distribution generalisability of the current state-of-the-art image forgery detection techniques through several experiments. Our study focuses on models that utilise handcrafted features for image forgery detection. We show that the developed methods fail to perform well on cross-dataset evaluations and in-the-wild manipulated media. As a consequence, a question is raised about the current evaluation and overestimated performance of the systems under consideration. Note: This work was done during a summer research internship at ITMR Lab, IIIT-Allahabad under the supervision of Prof. Anupam Agarwal.


翻译:10多年来,图像操纵和伪造检测一直是一项研究的主题。新时代工具和大型社交平台为操纵媒体提供了发展空间。这些媒体可能具有潜在危险,因此设计并测试了无数方法,以证明其在检测伪造方面的健全性。然而,最先进的系统报告的结果显示,监督方法几乎达到完美性能,但只有特定数据集才能做到这一点。在这项工作中,我们通过若干实验分析了当前最新图像伪造检测技术在传播上的普遍性。我们的研究侧重于利用手工制作特征进行图像伪造检测的模型。我们显示,开发的方法在交叉数据集评估和在网上操纵媒体方面未能很好地发挥作用。结果,有人对当前评估提出疑问,并高估了所考虑的系统绩效。注意:这项工作是在Anupam Agarwal教授监督下在Allahabad的ITMR实验室(IIIT-Allahabad)的一个暑期研究实习期间完成的。

0
下载
关闭预览

相关内容

[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
计算机视觉的不同任务
专知
5+阅读 · 2018年8月27日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Arxiv
0+阅读 · 2022年1月28日
Arxiv
0+阅读 · 2022年1月26日
Arxiv
20+阅读 · 2020年6月8日
Image Captioning: Transforming Objects into Words
Arxiv
7+阅读 · 2019年6月14日
Augmentation for small object detection
Arxiv
11+阅读 · 2019年2月19日
Arxiv
8+阅读 · 2018年11月27日
VIP会员
相关VIP内容
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
计算机视觉的不同任务
专知
5+阅读 · 2018年8月27日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Top
微信扫码咨询专知VIP会员