3D point cloud registration ranks among the most fundamental problems in remote sensing, photogrammetry, robotics and geometric computer vision. Due to the limited accuracy of 3D feature matching techniques, outliers may exist, sometimes even in very large numbers, among the correspondences. Since existing robust solvers may encounter high computational cost or restricted robustness, we propose a novel, fast and highly robust solution, named VOCRA (VOting with Cost function and Rotating Averaging), for the point cloud registration problem with extreme outlier rates. Our first contribution is to employ the Tukey's Biweight robust cost to introduce a new voting and correspondence sorting technique, which proves to be rather effective in distinguishing true inliers from outliers even with extreme (99%) outlier rates. Our second contribution consists in designing a time-efficient consensus maximization paradigm based on robust rotation averaging, serving to seek inlier candidates among the correspondences. Finally, we apply Graduated Non-Convexity with Tukey's Biweight (GNC-TB) to estimate the correct transformation with the inlier candidates obtained, which is then used to find the complete inlier set. Both standard benchmarking and realistic experiments with application to two real-data problems are conducted, and we show that our solver VOCRA is robust against over 99% outliers and more time-efficient than the state-of-the-art competitors.
翻译:3D点云层登记是遥感、摄影测量、机器人和几何计算机视觉中最基本的问题之一。 由于 3D 特征匹配技术的准确性有限, 外部线可能存在于通信中, 有时甚至是非常大的数量。 由于现有的强势解决问题者可能遇到高计算成本或限制强健度, 我们提议了一个创新的、 快速的和高度有力的解决方案, 名为 VOCRA( 与成本函数并进行旋转), 名为 VOCRA( 与成本函数并进行旋转) 。 最后, 我们的第一个贡献是使用 Tukey 的双倍稳健成本来引入一种新的投票和信件排序技术, 事实证明, 外部线将真实的内线与外部线区分开来相当有效, 即使是与极端( 99 % ) 的外部线。 我们的第二个贡献在于设计一个基于稳健的轮换平均率的具有时间效率的共识最大化模式, 用于在通信中寻找不精确的候选人 。 最后, 我们用 Tukey 的 Biight ( GNC- TAB) 来估算与获得的直线候选人的正确转换过程的转换, 然后用来找出真实的测试, 而不是我们用来找到完全的直观的 RIS 。