Device Model Generalization (DMG) is a practical yet under-investigated research topic for on-device machine learning applications. It aims to improve the generalization ability of pre-trained models when deployed on resource-constrained devices, such as improving the performance of pre-trained cloud models on smart mobiles. While quite a lot of works have investigated the data distribution shift across clouds and devices, most of them focus on model fine-tuning on personalized data for individual devices to facilitate DMG. Despite their promising, these approaches require on-device re-training, which is practically infeasible due to the overfitting problem and high time delay when performing gradient calculation on real-time data. In this paper, we argue that the computational cost brought by fine-tuning can be rather unnecessary. We consequently present a novel perspective to improving DMG without increasing computational cost, i.e., device-specific parameter generation which directly maps data distribution to parameters. Specifically, we propose an efficient Device-cloUd collaborative parametErs generaTion framework DUET. DUET is deployed on a powerful cloud server that only requires the low cost of forwarding propagation and low time delay of data transmission between the device and the cloud. By doing so, DUET can rehearse the device-specific model weight realizations conditioned on the personalized real-time data for an individual device. Importantly, our DUET elegantly connects the cloud and device as a 'duet' collaboration, frees the DMG from fine-tuning, and enables a faster and more accurate DMG paradigm. We conduct an extensive experimental study of DUET on three public datasets, and the experimental results confirm our framework's effectiveness and generalisability for different DMG tasks.


翻译:设备通用模型( DMG) 是一个实用但调查不足的研究课题, 用于安装机器学习应用程序。 它旨在提高在资源限制装置上部署的预培训模型的通用能力, 如改进智能移动设备上预培训的云模型的性能。 虽然许多工作都调查了云层和装置之间的数据分配变化, 大部分工作的重点是个人设备个人化数据的数据转换模型的微调, 以便利DMG。 尽管这些方法很有希望, 但需要在设计设备上进行高级再培训, 但由于在实时数据上进行梯度计算时问题过大, 培训前培训的预培训模型的普及性能力也实际不可行。 在本文中,我们认为微调带来的计算成本可能相当不必要。 因此,我们提出了一个全新的观点, 在不增加计算成本的情况下改进DMG, 即直接将数据发布到参数。 具体装置的生成, 我们提议一个高效的设备- clo- 合作的普里特尔基因框架 DUET 。 将一个精细的云度标准部署在强大的个人云层服务器上, 只需通过低成本化的传输和低时间化的数据传输和低延迟化数据条件, 就能进行实时数据传输。

0
下载
关闭预览

相关内容

Duet Game 开发商Kumobius Pty Ltd,更新时间2014年5月2日。
Duet Game的节奏并不复杂,通过不断的重新排列组合,来重新定义关卡的难度。

游戏界面不定时飘来方块,根据音乐的节奏来变换着队形。而玩家需要做的便是,在适当的时机,通过触摸屏幕来巧妙而灵活的躲避下坠的方块。点触屏幕两侧,使方块旋转或扭曲,避开前进道路上的障碍物。即使开头很简单,最后可能很复杂。
【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
117+阅读 · 2022年4月21日
专知会员服务
123+阅读 · 2020年9月8日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Device Tuning for Multi-Task Large Model
Arxiv
0+阅读 · 2023年2月21日
Arxiv
0+阅读 · 2023年2月18日
Arxiv
19+阅读 · 2022年10月6日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员