We explore the locomotion of soft robots in granular medium (GM) resulting from the elastic deformation of slender rods. A low-cost, rapidly fabricable robot inspired by the physiological structure of bacteria is presented. It consists of a rigid head, with a motor and batteries embedded, and multiple elastic rods (our model for flagella) to investigate locomotion in GM. The elastic flagella are rotated at one end by the motor, and they deform due to the drag from GM, propelling the robot. The external drag is determined by the flagellar shape, while the latter changes due to the competition between external loading and elastic forces. In this coupled fluid-structure interaction problem, we observe that increasing the number of flagella can decrease or increase the propulsive speed of the robot, depending on the physical parameters of the system. This nonlinearity in the functional relation between propulsion and the parameters of this simple robot motivates us to fundamentally analyze its mechanics using theory, numerical simulation, and experiments. We present a simple Euler-Bernoulli beam theory-based analytical framework that is capable of qualitatively capturing both cases. Theoretical prediction quantitatively matches experiments when the flagellar deformation is small. To account for the geometrically nonlinear deformation often encountered in soft robots and microbes, we implement a simulation framework that incorporates discrete differential geometry-based simulations of elastic rods, a resistive force theory-based model for drag, and a modified Stokes law for the hydrodynamics of the robot head. Comparison with experimental data indicates that the simulations can quantitatively predict robotic motion. Overall, the theoretical and numerical tools presented in this paper can shed light on the design and control of this class of articulated robots in granular or fluid media.
翻译:我们探索微软机器人在颗粒介质( GM) 中软体机器人的摇动, 由微粒棒的弹性变形产生。 展示了一个由细菌生理结构引发的低成本、 快速造型机器人。 它由硬头, 带有发动机和电池嵌入器, 以及多种弹性棒( 我们的旗杆模型) 组成, 以调查GM 中的滚动。 软性旗杆在发动机的一端旋转, 它们由于从GM 拖动而变形, 驱动机器人。 外部拖动由旗心机形状决定, 而后者则由外部机极装和弹性力量之间的竞争决定。 在这个混合的液态结构互动问题中, 我们观察到, 增加红心板的数或多动性棒棒( 红动) 的功能关系不直线性关系, 激励我们用理论、 数字模拟和实验来从根本上分析其机械的机械力。 我们展示了一个简单的Euler- Bernoul 的硬质模型, 在基于理论的模型的模型中, 将一个不动的变动的变动的变动的变压的变动的变压框架, 用来测量的变动的变压的变压的变动的变动的变压的变动的变动的变压的变压的变压的变压, 的变压的变压的机的机的变的变的变的变的变压的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变压的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的