Recent years have witnessed the rise of misinformation campaigns that spread specific narratives on social media to manipulate public opinions on different areas, such as politics and healthcare. Consequently, an effective and efficient automatic methodology to estimate the influence of the misinformation on user beliefs and activities is needed. However, existing works on misinformation impact estimation either rely on small-scale psychological experiments or can only discover the correlation between user behaviour and misinformation. To address these issues, in this paper, we build up a causal framework that model the causal effect of misinformation from the perspective of temporal point process. To adapt the large-scale data, we design an efficient yet precise way to estimate the Individual Treatment Effect(ITE) via neural temporal point process and gaussian mixture models. Extensive experiments on synthetic dataset verify the effectiveness and efficiency of our model. We further apply our model on a real-world dataset of social media posts and engagements about COVID-19 vaccines. The experimental results indicate that our model recognized identifiable causal effect of misinformation that hurts people's subjective emotions toward the vaccines.
翻译:近些年来,出现了错误信息运动,在社交媒体上散布具体叙事,以操纵公众在政治和医疗保健等不同领域的观点。因此,需要一种有效、高效的自动方法来估计错误信息对用户信仰和活动的影响。然而,目前关于错误信息影响估计的工作要么依靠小规模的心理实验,要么只能发现用户行为与错误信息之间的相互关系。为了解决这些问题,我们在本文件中建立了一个因果框架,从时间点进程的角度来模拟错误信息的因果关系。为了调整大规模数据,我们设计了一个高效而又精确的方法,通过神经时间点过程和高西语混合模型来估计个人治疗效果。关于合成数据集的广泛实验可以验证我们模型的效力和效率。我们进一步运用了我们关于社会媒体文章和关于COVID-19疫苗的实时数据集的模型。实验结果表明,我们的模型承认错误信息对伤害人们对疫苗的主观情感的可识别因果效应。