We study boundary element methods for time-harmonic scattering in $\mathbb{R}^n$ ($n=2,3$) by a fractal planar screen, assumed to be a non-empty bounded subset $\Gamma$ of the hyperplane $\Gamma_\infty=\mathbb{R}^{n-1}\times \{0\}$. We consider two distinct cases: (i) $\Gamma$ is a relatively open subset of $\Gamma_\infty$ with fractal boundary (e.g.\ the interior of the Koch snowflake in the case $n=3$); (ii) $\Gamma$ is a compact fractal subset of $\Gamma_\infty$ with empty interior (e.g.\ the Sierpinski triangle in the case $n=3$). In both cases our numerical simulation strategy involves approximating the fractal screen $\Gamma$ by a sequence of smoother "prefractal" screens, for which we compute the scattered field using boundary element methods that discretise the associated first kind boundary integral equations. We prove sufficient conditions on the mesh sizes guaranteeing convergence to the limiting fractal solution, using the framework of Mosco convergence. We also provide numerical examples illustrating our theoretical results.


翻译:我们研究的是以$mathb{R ⁇ n$(n=2,3美元)以折形平面屏幕进行时间和谐散射的边界元素方法。 我们研究的是两个不同的案例:(一)$\Gamma$是一个相对开放的子集,其中带有分形边界(例如,Koch雪花的内部值为$=3美元);(二)$\Gamma$是超平板机的非无界子集,其中含有$\Gamma_inffy}mathb{R ⁇ n-1 ⁇ _ ⁇ %0美元。我们考虑了两个不同的案例:(一)$\Gamma$是一个相对开放的子集成,其中含有$\Gamma_inffty}mathbright 美元,其中含有一个非空面平面平面平面平面平面平面屏幕(例如,Koch 雪花内部雪花的内部值为$\Gammamall 3美元);(二) $\Gamma$$Gamma$,其中我们用离散的离心平面平面图模型模型构建了离心平面的内框, 也提供了我们离心阵面的平面的内框的内框的内框。

0
下载
关闭预览

相关内容

神经网络的拓扑结构,TOPOLOGY OF DEEP NEURAL NETWORKS
专知会员服务
31+阅读 · 2020年4月15日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
《科学》(20190517出版)一周论文导读
科学网
5+阅读 · 2019年5月19日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【泡泡一分钟】无参相机标定
泡泡机器人SLAM
3+阅读 · 2018年11月7日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
lightgbm algorithm case of kaggle(上)
R语言中文社区
8+阅读 · 2018年3月20日
已删除
将门创投
3+阅读 · 2018年3月13日
Arxiv
0+阅读 · 2021年3月25日
Arxiv
0+阅读 · 2021年3月24日
Arxiv
0+阅读 · 2021年3月23日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
《科学》(20190517出版)一周论文导读
科学网
5+阅读 · 2019年5月19日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【泡泡一分钟】无参相机标定
泡泡机器人SLAM
3+阅读 · 2018年11月7日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
lightgbm algorithm case of kaggle(上)
R语言中文社区
8+阅读 · 2018年3月20日
已删除
将门创投
3+阅读 · 2018年3月13日
Top
微信扫码咨询专知VIP会员