Vector spherical harmonics on the unit sphere of $\mathbb{R}^3$ have broad applications in geophysics, quantum mechanics and astrophysics. In the representation of a tangent vector field, one needs to evaluate the expansion and the Fourier coefficients of vector spherical harmonics. In this paper, we develop fast algorithms (FaVeST) for vector spherical harmonic transforms on these evaluations. The forward FaVeST evaluates the Fourier coefficients and has a computational cost proportional to $N\log \sqrt{N}$ for $N$ number of evaluation points. The adjoint FaVeST which evaluates a linear combination of vector spherical harmonics with a degree up to $\sqrt{M}$ for $M$ evaluation points has cost proportional to $M\log\sqrt{M}$. Numerical examples of simulated tangent fields illustrate the accuracy, efficiency and stability of FaVeST.
翻译:$\mathbb{R ⁇ 3$单位范围内的矢量球调和在地球物理学、量子力学和天体物理学方面应用广泛。 在代表相近的矢量场时,需要评估矢量球调和四倍系数的扩展和四倍系数。 在本文中,我们为这些评价的矢量球调变开发快速算法(FaVeST) 。 FaVeST 评估了 Fourier 系数,计算成本比例为$\log\sqrt{N}$, 计算值为$N$。 联合 FaVeST 评估矢量球调的线性组合, 度为$\sqrt{M}, 成本与 $M(M) 成比例。 模拟色域的数值示例说明了 FaVeST 的准确性、 效率和稳定性。