As a follow-up of a previous work of the authors, this work considers {\em uniform global time-renormalization functions} for the {\em gravitational} $N$-body problem. It improves on the estimates of the radii of convergence obtained therein by using a completely different technique, both for the solution to the original equations and for the solution of the renormalized ones. The aforementioned technique which the new estimates are built upon is known as {\em majorants} and allows for an easy application of simple operations on power series. The new radii of convergence so-obtained are approximately doubled with respect to our previous estimates. In addition, we show that {\em majorants} may also be constructed to estimate the local error of the {\em implicit midpoint rule} (and similarly for Runge-Kutta methods) when applied to the time-renormalized $N$-body equations and illustrate the interest of our results for numerical simulations of the solar system.
翻译:作为作者先前工作的一项后续行动,本项工作考虑了 $N-body 问题 的 ~ 统一全球时间调整功能 。 它改进了对通过使用完全不同的技术获得的趋同线的估算, 用于解决原始方程和解决重新标准化的方程。 新估计所基于的上述技术被称为 ~ em majants }, 便于在电源序列上应用简单操作。 与我们先前的估算相比, 如此实现的新的趋同线大约翻了一番。 此外, 我们显示, ~ em majants} 也可以在适用于时间调整的 $N- body 方程时, 用来估计 ~ em 默示中点规则 (和 Runge- Kutta 方法相似) 的地方错误, 并显示我们对太阳系数字模拟的兴趣 。