From out-competing grandmasters in chess to informing high-stakes healthcare decisions, emerging methods from artificial intelligence are increasingly capable of making complex and strategic decisions in diverse, high-dimensional, and uncertain situations. But can these methods help us devise robust strategies for managing environmental systems under great uncertainty? Here we explore how reinforcement learning, a subfield of artificial intelligence, approaches decision problems through a lens similar to adaptive environmental management: learning through experience to gradually improve decisions with updated knowledge. We review where reinforcement learning (RL) holds promise for improving evidence-informed adaptive management decisions even when classical optimization methods are intractable. For example, model-free deep RL might help identify quantitative decision strategies even when models are nonidentifiable. Finally, we discuss technical and social issues that arise when applying reinforcement learning to adaptive management problems in the environmental domain. Our synthesis suggests that environmental management and computer science can learn from one another about the practices, promises, and perils of experience-based decision-making.
翻译:从国际象棋中的竞争对手,到向高考生通报保健决策,人工智能中新出现的方法越来越能够在不同、高层次和不确定的情况下作出复杂和战略性决策。但这些方法能帮助我们在极不确定的情况下制定管理环境系统的强有力战略吗?在这里,我们探索如何通过类似于适应性环境管理的透镜处理强化学习、人工智能的子领域、如何通过类似于适应性环境管理的透镜处理决策问题:如何通过经验学习,逐步改进有更新知识的决策。我们审查强化学习(RL)在哪些方面有希望改进循证的适应性管理决策,即使传统的优化方法难以采用。例如,即使模型无法识别,无模型的深度RL可能有助于确定量化决策战略。最后,我们讨论了在将强化学习应用到环境领域适应性管理问题时出现的技术和社会问题。我们的合成表明,环境管理和计算机科学可以相互学习关于基于经验的决策的做法、承诺和风险。</s>