With computers getting more and more powerful and integrated in our daily lives, the focus is increasingly shifting towards more human-friendly interfaces, making Automatic Speech Recognition (ASR) a central player as the ideal means of interaction with machines. Consequently, interest in speech technology has grown in the last few years, with more systems being proposed and higher accuracy levels being achieved, even surpassing \textit{Human Accuracy}. While ASR systems become increasingly powerful, the computational complexity also increases, and the hardware support have to keep pace. In this paper, we propose a technique to improve the energy-efficiency and performance of ASR systems, focusing on low-power hardware for edge devices. We focus on optimizing the DNN-based Acoustic Model evaluation, as we have observed it to be the main bottleneck in state-of-the-art ASR systems, by leveraging run-time information from the Beam Search. By doing so, we reduce energy and execution time of the acoustic model evaluation by 25.6% and 25.9%, respectively, with negligible accuracy loss.


翻译:随着计算机在日常生活中越来越强大和一体化,重点正日益转向更方便人的界面,使自动语音识别(ASR)成为与机器互动的理想手段,因此,过去几年对语音技术的兴趣有所增长,提出了更多的系统,并实现了更高的准确度,甚至超过了textit{人类准确度}。虽然ASR系统越来越强大,但计算复杂性也在增加,硬件支持必须跟上步伐。在本文中,我们提出了一个提高ASR系统能效和性能的技术,重点是边缘装置的低功率硬件。我们注重优化基于DNNN的声学模型评估,我们观察到这是最新ASR系统的主要瓶颈,通过利用Baam搜索的运行时间信息。我们这样做,将声学模型评估的能量和执行时间分别减少25.6%和25.9%,而精确率损失微乎其微。

0
下载
关闭预览

相关内容

语音识别是计算机科学和计算语言学的一个跨学科子领域,它发展了一些方法和技术,使计算机可以将口语识别和翻译成文本。 它也被称为自动语音识别(ASR),计算机语音识别或语音转文本(STT)。它整合了计算机科学,语言学和计算机工程领域的知识和研究。
【DeepMind】强化学习教程,83页ppt
专知会员服务
152+阅读 · 2020年8月7日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
简评 | Video Action Recognition 的近期进展
极市平台
20+阅读 · 2019年4月21日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
计算机 | ISMAR 2019等国际会议信息8条
Call4Papers
3+阅读 · 2019年3月5日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
笔记 | Deep active learning for named entity recognition
黑龙江大学自然语言处理实验室
24+阅读 · 2018年5月27日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
VIP会员
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
简评 | Video Action Recognition 的近期进展
极市平台
20+阅读 · 2019年4月21日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
计算机 | ISMAR 2019等国际会议信息8条
Call4Papers
3+阅读 · 2019年3月5日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
笔记 | Deep active learning for named entity recognition
黑龙江大学自然语言处理实验室
24+阅读 · 2018年5月27日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员