We study a natural combinatorial single-principal multi-agent contract design problem, in which a principal motivates a team of agents to exert effort toward a given task. At the heart of our model is a reward function, which maps the agent efforts to an expected reward of the principal. We seek to design computationally efficient algorithms for finding optimal (or near-optimal) linear contracts for reward functions that belong to the complement-free hierarchy. Our first main result gives constant-factor approximation algorithms for submodular and XOS reward functions, with value and demand oracles, respectively. It relies on an unconventional use of ``prices'' and (approximate) demand queries for selecting the set of agents that the principal should contract with, and exploits a novel scaling property of XOS functions and their marginals, which may be of independent interest. Our second main result is an $\Omega(\sqrt{n})$ impossibility for settings with $n$ agents and subadditive reward functions, even with demand oracle access. A striking feature of this impossibility is that it applies to subadditive functions that are constant-factor close to submodular. This presents a surprising departure from previous literature, e.g., on combinatorial auctions.
翻译:我们研究的是自然组合式单一主要用途多试剂合同设计问题,其中一位主要人物激励一组代理人努力完成某项任务。我们模型的核心是奖赏功能,将代理人的努力映射为本金的预期奖赏。我们试图设计计算高效的算法,寻找属于无补充等级的最佳(或接近最佳)线性合同,作为属于无补充等级的奖赏功能。我们的第一个主要结果为分模和XOS奖赏功能提供了常态速效近效算法,这些奖赏功能有价值和需求或触手可及。它依赖非常规地使用“价格”和(近似近似)要求查询来选择本金应与之签约的一组代理人,并利用XOS功能及其边缘的新规模属性,这可能具有独立的兴趣。我们的第二个主要结果是用$\Omega(或接近)$(sqrt{n}) 来计算属于无补充等级的奖赏功能,即使有需求或触手。这一可能性的一个突出特征是,它适用于本金与本金的分级的分式拍卖功能。它适用于前一版本的子拍卖。