Vertebrate retinas are highly-efficient in processing trivial visual tasks such as detecting moving objects, yet a complex challenges for modern computers. In vertebrates, the detection of object motion is performed by specialised retinal cells named Object Motion Sensitive Ganglion Cells (OMS-GC). OMS-GC process continuous visual signals and generate spike patterns that are post-processed by the Visual Cortex. Our previous Hybrid Sensitive Motion Detector (HSMD) algorithm was the first hybrid algorithm to enhance Background subtraction (BS) algorithms with a customised 3-layer Spiking Neural Network (SNN) that generates OMS-GC spiking-like responses. In this work, we present a Neuromorphic Hybrid Sensitive Motion Detector (NeuroHSMD) algorithm that accelerates our HSMD algorithm using Field-Programmable Gate Arrays (FPGAs). The NeuroHSMD was compared against the HSMD algorithm, using the same 2012 Change Detection (CDnet2012) and 2014 Change Detection (CDnet2014) benchmark datasets. When tested against the CDnet2012 and CDnet2014 datasets, NeuroHSMD performs object motion detection at 720x480 at 28.06 Frames Per Second (fps) and 720x480 at 28.71 fps, respectively, with no degradation of quality. Moreover, the NeuroHSMD proposed in this paper was completely implemented in Open Computer Language (OpenCL) and therefore is easily replicated in other devices such as Graphical Processing Units (GPUs) and clusters of Central Processing Units (CPUs).


翻译:Vertebrate 视网膜在处理诸如探测移动物体等无关紧要的视觉任务方面效率很高,但现代计算机却面临复杂挑战。在脊椎动物中,对物体运动的检测是由名为“物体运动敏感凝聚细胞”的专用视网膜细胞(OMS-GC)进行的。OMS-GC进程连续视觉信号并生成由视觉科特克斯(FPGAs)处理后处理的峰值模式。我们以前的混合敏感运动探测器(HSMD)算法是第一个用定制的三层 Spiking神经网络(SNNN)来强化背景减量算法的混合算法,该算法生成了OMS-GC的快速神经网络反应。在这项工作中,我们展示了一个名为“神经运动混合运动”的神经运动感光电感动感应器,因此,NEUHSMDM(CD2012) 和2014年变换码目标检测(CDnet 2014年) 基准数据设置了ODMIS 的直径阵列,因此,在二十八号的内直径CMLMER 和CDMER 的SBSER 进行测试中,因此,在这种直径2020和CD-CRER 。

0
下载
关闭预览

相关内容

Processing 是一门开源编程语言和与之配套的集成开发环境(IDE)的名称。Processing 在电子艺术和视觉设计社区被用来教授编程基础,并运用于大量的新媒体和互动艺术作品中。
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年9月18日
Arxiv
0+阅读 · 2022年9月15日
Arxiv
13+阅读 · 2021年3月3日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
相关基金
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员