Describing systems in terms of choices and their resulting costs and rewards offers the promise of freeing algorithm designers and programmers from specifying how those choices should be made; in implementations, the choices can be realized by optimization techniques and, increasingly, by machine-learning methods. We study this approach from a programming-language perspective. We define two small languages that support decision-making abstractions: one with choices and rewards, and the other additionally with probabilities. We give both operational and denotational semantics. In the case of the second language we consider three denotational semantics, with varying degrees of correlation between possible program values and expected rewards. The operational semantics combine the usual semantics of standard constructs with optimization over spaces of possible execution strategies. The denotational semantics, which are compositional, rely on the selection monad, to handle choice, augmented with an auxiliary monad to handle other effects, such as rewards or probability. We establish adequacy theorems that the two semantics coincide in all cases. We also prove full abstraction at base types, with varying notions of observation in the probabilistic case corresponding to the various degrees of correlation. We present axioms for choice combined with rewards and probability, establishing completeness at base types for the case of rewards without probability.


翻译:从选择及其所产生的成本和回报的角度描述系统,可以使算法设计者和程序设计者能够自由说明如何作出这些选择;在实施过程中,选择可以通过优化技术实现,并越来越多地通过机器学习方法实现;我们从编程语言的角度研究这一方法;我们定义了两种支持决策抽象的小型语言:一种是选择和奖励,而另一种是附加概率;我们提供操作和批注的语义。在第二种语言中,我们认为三种分解语义的语义,可能的程序值和预期的奖赏之间有不同程度的关联。操作语义结合了标准的通常语义和可能的执行战略空间的优化。分解语义,这些语义依赖选择的语义,处理选择,增加一个辅助语义,以处理其他影响,如奖赏或概率。我们确定两种语义的词义在所有情况中都吻合。我们也证明在基础类型上完全抽象,在概率和概率判断方面有不同的概念,在概率方面,在概率方面,我们为判断的概率和概率方面,在概率方面建立不同。

0
下载
关闭预览

相关内容

专知会员服务
31+阅读 · 2021年6月12日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
IJCAI2020接受论文列表,592篇论文pdf都在这了!
专知会员服务
63+阅读 · 2020年7月16日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年10月13日
Arxiv
0+阅读 · 2021年10月12日
Arxiv
1+阅读 · 2021年10月12日
Arxiv
0+阅读 · 2021年10月12日
Arxiv
46+阅读 · 2021年10月4日
The Measure of Intelligence
Arxiv
6+阅读 · 2019年11月5日
Arxiv
11+阅读 · 2018年9月28日
Arxiv
4+阅读 · 2017年1月2日
VIP会员
相关资讯
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Arxiv
0+阅读 · 2021年10月13日
Arxiv
0+阅读 · 2021年10月12日
Arxiv
1+阅读 · 2021年10月12日
Arxiv
0+阅读 · 2021年10月12日
Arxiv
46+阅读 · 2021年10月4日
The Measure of Intelligence
Arxiv
6+阅读 · 2019年11月5日
Arxiv
11+阅读 · 2018年9月28日
Arxiv
4+阅读 · 2017年1月2日
Top
微信扫码咨询专知VIP会员